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RESEARCH ARTICLE

Decentralized Common Knowledge Oracles
Austin K. Williams,∗† Jack Peterson‡

Abstract. We define and analyze three mechanisms for getting common knowledge, a poste-
riori truths about the world onto a blockchain in a decentralized setting. We show that, when
a reasonable economic condition is met, these mechanisms are individually rational, incentive
compatible, and decide the true outcome of valid oracle queries in both the non-cooperative
and cooperative settings. These mechanisms are based upon repeated games with two classes
of players: queriers who desire to get common knowledge truths onto the blockchain and a
pool of reporters who possess such common knowledge. Presented with a new oracle query,
reporters have an opportunity to report the truth in return for a fee provided by the querier.
During subsequent oracle queries, the querier has an opportunity to punish any reporters who
did not report truthfully during previous rounds. While the set of reporters has the power to
cause the oracle to lie, they are incentivized not to do so.

1. Introduction

1.1. Background—In order for smart contracts to condition their execution on the state of
the world, they need access to information about the world. While smart contracts can verify
a priori claims with mathematical or cryptographic certainty, they cannot independently verify
a posteriori claims about the world with the same assurances. As a matter of epistemological
necessity, smart contracts which condition their behavior on a posteriori knowledge must rely on
trusted oracles to provide that knowledge. As a result, we can trust these smart contracts only if
we can trust their oracles.

With no possibility of mathematical or cryptographic verification of a posteriori claims about
the world, we instead look to economic incentives when considering whether to trust an oracle.
We require that the cost (to the oracle operators) of lying be greater than the benefit. More
specifically, we require that truth-telling be incentive compatible. We also want the operation of
the oracle to have a non-negative expected return for the operators. That is, we require that the
operation of the oracle be individually rational. Finally, we want the oracle to be decentralized in
order to avoid both censorship and a single point of failure.

A common approach to designing such an oracle is to create a coordination game in which
individual human players are presented with an oracle query and are asked to report the correct
outcome by staking some tokens.1, 2 The oracle outputs whichever outcome received the most
stake as the “winning outcome,” and then players are rewarded if and only if they staked in
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agreement with the winning outcome. The hope in these “Schelling scheme” approaches is
that the truth will act as the Schelling point of a coordination game, which would result in the
oracle returning the true outcome to the oracle query. Although these approaches are appealing
because they are easy to implement and have a high degree of social scalability, they have serious
drawbacks that make their real-world success unlikely.

First, Schelling points themselves are an informal solution concept used in the context
of coordination games in which pre-play communication is incomplete or impossible, and in
bargaining games in which players cannot make binding agreements.3 However, in the open
blockchain setting, players can freely engage in pre-play communication (via Reddit, Twitter,
email, etc.) and make binding agreements (for example, via smart contracts). So the Schelling
point solution concept is not one that is known to be applicable in the types of strategic settings
in which blockchain oracles operate.

Second, the coordination game approach to oracle design can be incentive compatible only in
the non-cooperative model. As soon as players are able to make binding agreements, they can
perform bribing attacks and form coalitions that are large enough to make the oracle lie without
members of the coalition receiving any penalty.4 If players can form coalitions, we cannot rely
on truth-telling being incentive compatible for mechanisms following the coordination game
paradigm. The root of the problem is that players are rewarded for agreeing with the majority
whether or not the majority tells the truth.

For these reasons we think it is unlikely that the coordination-game approach to decentralized
oracle design will work in practice. We desire an oracle that is incentive compatible in the
cooperative model—where players can engage in pre-play communication and make binding
agreements.

In addition to being incentive compatible in isolation, one must also consider the trustwor-
thiness of oracles in the presence of “extraneous incentives”: truth-telling must be incentive
compatible when the output of the oracle is consumed to control the irreversible payout of large
amounts of cryptocurrency. For example, every bet placed on a decentralized betting platform
increases the gross incentive to make the platform’s oracle lie. Many existing blockchain oracle
designs do not explicitly consider the incentives introduced by the consumption of the oracle’s
output when analyzing the incentive compatibility of their mechanisms. (With the exception
of Augur’s oracle design,5 we are unaware of any proposed blockchain oracles, centralized or
decentralized, that explicitly quantify and address this risk.) However, explicit consideration of
such extraneous incentives is crucial when considering the security of oracles to be deployed for
real-world use. For a given oracle design, we can quantify this risk and state precisely how much
extraneous incentive the design can handle before losing incentive compatibility.

1.2. Our approach—In this paper, we describe a new approach to oracle design that does not
follow the coordination-game paradigm. For the mechanisms in this paper, truth-telling is—under
certain reasonable economic conditions—incentive compatible in both the non-cooperative and
cooperative game-theoretic models. A large coalition may form that makes the oracle lie, but
members of such a coalition are severely penalized. Indeed, they are penalized more than they
might gain from causing the oracle to lie. This stands in contrast to mechanisms based on
coordination games, which reward such large coalitions for lying.

At a high level, we begin with a separation of concerns. We create a distinction between
those who want to get common knowledge, a posteriori information on-chain and those who
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possess such common knowledge. We refer to the former as queriers and the latter as reporters.
For example, a trustless, decentralized platform for betting on the outcomes of elections would
be a querier because it wants to get the true outcomes of elections on-chain in order to settle
bets. A collection of humans that tells the platform which candidates have won would be a set of
reporters.

We then create mechanisms based upon repeated games—played by queriers and reporters—
wherein each stage game corresponds to an oracle query and the outcome of each stage game
determines how the oracle responds to the query. We show that under certain economic conditions
(which explicitly include any extraneous incentives introduced by any consumption of the oracle’s
output) there exists equilibrium behavior in these stage games that results in the oracle returning
the true outcome of real world events. These first incentive compatibility proofs take place in the
non-cooperative model and assume that the set of queriers and the set of reporters is disjoint.

We present three such mechanisms. Each mechanism is more complex than the last, but
also has better scalability properties. We more closely examine the conditions under which
our results hold and discuss the weaknesses of our approach. We also consider the cooperative
game-theoretic model, where the queriers and reporters can form coalitions (or may even be the
same people). We show that, with some additional conditions, our results hold in the cooperative
model as well.

2. Definitions

Definition (Outcome space). For all events E, an outcome space of E, denoted ΩE, is a finite
set of possible outcomes of E. We require that every outcome space contain the special element
Invalid, and that no outcome space contain the special element Abstain. When the event E is
clear from context, we may drop the subscript and denote the outcome space Ω.

Definition (Oracles and queries). An oracle is any algorithm that accepts as input an event E, a
corresponding outcome space Ω, (and, optionally, some additional arguments) and outputs some
ω ∈Ω. A call to the oracle is referred to as a query.

Definition (Common knowledge). A proposition P is said to be common knowledge among a
group of agents G if all agents in G know P, they all know that they all know P, they all know
that they all know that they all know P, and so on, ad infinitum.6

The group of agents G is the collection of all users who interact with the oracle. Informally,
one may consider a proposition to be common knowledge if it can be quickly verified by any
user with access to the World Wide Web.

Definition (True outcome). For every oracle query with arguments E and Ω, we define a unique
outcome in Ω to be the true outcome for the query. We denote such an outcome True, and it is
defined as follows. If there exists a unique outcome ω ∈Ω\{Invalid} such that—at the time
of the oracle query—it is common knowledge that the outcome of event E is ω , then ω is the true
outcome for the query. Otherwise, Invalid is the true outcome for the query.

Definition (False outcome). For every oracle query, every outcome in Ω that is not True is a
false outcome.

It is important to note that simply corresponding to objective reality is not a sufficient

159
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2019.166



LEDGER VOL 4 (2019) 157-190

condition for an outcome to be the True outcome for a query. The fact that the outcome
corresponds to objective reality must also be common knowledge at the time of the query.

Definition (Valid query). A query whose True outcome is not Invalid is referred to a valid
query.

Using this terminology, our objective for this paper is to construct a decentralized, incentive
compatible, individually rational mechanism that decides the True outcome of valid queries.

Definition (Ω-partition). If T is a finite set of tokens, E is an event, and Ω is an outcome space
of E, then an Ω-partition of T is an indexed family of |Ω|+ 1 mutually disjoint subsets of T
(referred to as cells) indexed by Ω∪{Abstain} where the union of the cells is T . An Ω-partition
may be represented succinctly using the indexed-family notation C = (Cω)ω∈Ω∪{Abstain}, or in

expanded form via
{

CAbstain,Cω1 , . . . ,Cω|Ω|

}
.

Colloquially, an Ω-partition of a set of tokens is simply the separation of the tokens into
“piles” (cells) that are labeled by the outcomes in Ω∪{Abstain}. Such partitions arise naturally
in the context of voting with tokens. For example, suppose that everyone who owns at least one
token in a set of tokens, T , is asked to cast a vote in favor of some outcome in Ω. If we separate
the tokens into cells according to how the owner of each token voted, the resulting partition
would be an Ω-partition of T . (Any tokens owned by someone who refused to vote is put into the
pile labelled “Abstain.”)

Next, we develop notation for a simple algorithm that asks a player to report the outcome
of some event. The player’s response, along with the set of tokens controlled by the player, are
returned.

Definition (Report). The algorithm Report takes as input a tuple ( j,E,Ω,T ), where T is a set
of tokens, j is the owner of at least one token in T , E is an event, and Ω is an outcome space
of E. The owner, j, is asked to report which element ω in Ω∪{Abstain} is True. If j fails to
respond then ω is understood to be Abstain. Report returns the tuple (ω,R), where R is the set
of all tokens in T that are owned by j.

Next, we define an important algorithm referred to as the fork. The fork is not an oracle, but
will be used as an important subroutine in the oracles we construct in this paper. In brief, the fork
is the process whereby owners of tokens stake their tokens on some outcome as a response to a
query.

Definition (Fork). The algorithm F , referred to as the fork, accepts as input a tuple (E,Ω,T )—
where E is an event, Ω is an outcome space of E, and T is a finite set of tokens—and returns an
Ω-partition of T .

At a high level, F works as follows. Each owner of tokens in T is queried to ask which
outcome in Ω is True. The owner’s tokens are assigned to the cell that corresponds to the
outcome they reported. If the owner does not respond (or if their response is not in Ω), then their
token are put in cell CAbstain. Once all tokens in T have been assigned to a cell, F returns the
collection of cells, which is an Ω-partition of T . In pseudocode:

def F (E,Ω,T ):

// begin with all cells empty
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for each ω ∈Ω∪{Abstain}:
Cω ← /0

endforeach

// query all token owners for reports

for each owner j of tokens in T :

(ω,R)← Report( j,E,Ω,T )
//put the owner ’s tokens in the cell corresponding to the

reported outcome

Cω ←Cω ∪R
endforeach

// return the Ω-partition of T

return
{

CAbstain,Cω1 , . . . ,Cω|Ω|

}
enddef

For our purposes, all calls to F are assumed to be public, as are the resulting outputs. (In
practice, F would be implemented as a smart contract on a blockchain, and its entire history of
calls and responses would be public.) The for loop in which token owners are queried may be
run in parallel so that all token owners are queried simultaneously.

Finally, we define two simple subroutines: Pay and PluralityWinner.

Definition (Pay). The subroutine Pay accepts as input a tuple (T,φ), where T is a finite set of
tokens and φ is some amount of currency. Each owner of tokens in T is given a pro rata share of
φ . In particular, if R⊆ T is the set of tokens owned by some agent, then that agent will be paid a
total of φ |R|

|T | .

Definition (PluralityWinner). The subroutine PluralityWinner accepts as input an Ω-partition
and returns an outcome in Ω whose corresponding cell in the Ω-partition is of the maximum size.
Any ties are broken uniformly at random. (How ties are broken is unimportant for our purposes.
Our results remain unchanged so long as the winner is chosen from among those outcomes whose
corresponding cells have the maximum size.) In pseudocode:

def PluralityWinner({CAbstain,Cω1 , . . . ,Cω|Ω|})
//get outcomes in Ω with largest corresponding cells

X ←{ω | ω ∈Ω∧∀γ ∈Ω : |Cω | ≥ |Cγ |}

// break any ties uniformly at random

ω̂
$←− X

return ω̂

enddef

Colloquially, PluralityWinner simply interprets an Ω-partition as the outcome of a plurality
vote and returns the winner. Note that PluralityWinner never returns Abstain, because X ⊂Ω

and Abstain /∈Ω.
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3. Assumptions

We model all agents as being rational. In particular, all agents come equipped with a von
Neumann-Morgenstern utility function and always prefer actions that maximize their expected
utility. For simplicity, we model agents as being risk neutral and having utility functions that are
quasilinear in money. We assume agents are not budget constrained.

We further model all agents as being able to engage in costless communication with one
another before making decisions. For the majority of the paper, we will assume that the set
of queriers and the set of reporters are disjoint, and we model the players as not being able
to make binding agreements with one another—and so our first analyses will be done in the
non-cooperative setting.

In section 11 we consider the effects of costless binding agreements and transferable utility
by analyzing our approach in the cooperative model. Note that this also covers the case where
the set of queriers and the set of reporters are not necessarily disjoint.7

Throughout the paper we assume that the center of each mechanism is a smart contract that
has no a posteriori knowledge of the world, and that the platform on which the smart contracts
are executed is censorship resistant.

4. The Simple Oracle, A0

4.1. Motivation—We construct a simple decentralized oracle that treats the fork F as a
plurality vote and returns the winning outcome. The key is to wrap F with a mechanism that
encourages token owners to report True when they are queried during F . When a certain
“economic soundness” condition is met (see section 5.2) we can expect the winning outcome of
the fork to be the True outcome of the event. In its most basic form, the algorithm consists of:
• Beginning with a reporting pool of tokens of equal value
• Paying a reporting fee to the owners of tokens in the reporting pool before calling F and
• Permanently removing from the reporting pool any tokens that were not used to report
True during the previous query

Tokens removed from the reporting pool no longer earn their owners a reporting fee, so they
are expected to have strictly lower value than tokens that remain in the pool. The price difference
serves as an incentive for agents to report True.

4.2. Construction—The simple oracle, denoted A0, works as follows. We create an initial
finite set, Tgenesis, of tokens that have no intended value outside of their use in this context. This
set of tokens serves as the initial reporting pool. When querying the oracle, the caller pays the
oracle a fee, denoted φ . The oracle distributes this fee to owners of tokens in the reporting pool.

The oracle passes the query to the fork, which asks the owners of tokens in the reporting
pool to report the True outcome of the event. The response from the fork is interpreted as the
outcome of a plurality vote, and the outcome with the most votes is returned by the oracle.

It is those that query the oracle—assisted by smart contracts—that execute the algorithm A0.
In particular, it is those that query the oracle that determine which tokens were used to report
truthfully during the previous call, and thus which token owners will be paid during the next call.
While token owners decide the outcome that the oracle returns, it is those that query the oracle in
the future that determine whether the previous response was true.

After the oracle returns an outcome, all tokens in the reporting pool that were not used to tell
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the truth are removed from the reporting pool for the next round. In pseudocode:

// initial state

C0
True← Tgenesis

i← 0

def A0(E,Ω,φ):
// increment query counter

i← i+1

// update the reporting pool

//only truth -tellers from previous query remain in pool

Ti←Ci−1
True

//pay owners of tokens in Ti
Pay(Ti,φ)

//call F with inputs (E,Ω,Ti)
{Ci

Abstain,C
i
ω1
, . . . ,Ci

ω|Ω|
}← F (E,Ω,Ti)

// select winning outcome

ω̂i← PluralityWinner({Ci
Abstain,C

i
ω1
, . . . ,Ci

ω|Ω|
})

// return winning outcome

return ω̂i

enddef

5. Analysis of A0

5.1. Introduction—Our goal is to design an incentive compatible, individually rational
mechanism that implements a decision function that outputs the True outcome for a valid oracle
query. We will show that when a certain “economic soundness condition” is satisfied (see Section
5.2) the simple oracle A0 is such a mechanism.

The execution of the oracle A0 is modeled as a repeated game with two classes of players:
reporters and a querier. Each stage game of the repeated game is associated with an oracle query,
and is modeled as a sequential game that operates as follows:

(1) Each reporter chooses an outcome in response to the oracle query associated with the
current stage game

(2) The querier chooses how to update the reporting pool
We will show that A0 is incentive compatible by showing that there exists a Pareto efficient,

subgame-perfect Nash equilibrium in the stage game which results in A0 returning the True

outcome for the oracle query. In particular, we will show that our desired player behavior—
where every reporter always reports the True outcome and the querier always removes from the
reporting pool all and only those tokens used to lie—is in equilibrium in the stage game. We will
then show that A0 is individually rational by demonstrating that the payouts for all players at this
equilibrium are positive and strictly greater than their minmax payouts.

5.2. The Economic Soundness Condition—Let Ii, j denote the benefit to reporter j from the
oracle returning a false outcome in response to the ith oracle query. It is important to note that
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Ii, j is intended to capture all benefit to reporter j—including any “extraneous” benefit—from the
oracle returning a false outcome in response to the ith oracle query. These benefits may be paid
out in any currency. (We do not assume, for instance, that these benefits are paid out with tokens
in T .) For example, if the oracle query is being used to determine payouts on a prediction market
for a national election, and reporter j has placed a large bet on the losing candidate, the value Ii, j

would include the value of reporter j’s bet. Similarly, any losing secondary bets (e.g., derivatives
or other side-bets on the outcome, which may be denominated in entirely different currencies)
placed by reporter j are also included in the value Ii, j.

Let Ii = ∑
j

Ii, j denote the total benefit received by all reporters from the oracle returning a

false outcome in response to the ith oracle query. This represents the maximum total collective
benefit (over all reporters) that could be gained from the oracle returning a false outcome to the
ith query.

Let pi denote the market price of a token in the ith reporting pool Ti, and let p′i denote the
market price of a token in Tgenesis \Ti. (That is, p′i denotes the market price of a token that has
been removed from the reporting pool for lying.)

Definition (Economic soundness condition). We say the economic soundness condition is
satisfied for the ith oracle query if Ii <

1
2(pi+1− p′i+1)|Ti|.

When i can be inferred from context, we may omit the subscripts and simply say that the
economic soundness condition is satisfied when I < 1

2(p− p′)|T |. If one assumes that tokens
which have been removed from the reporting pool have zero value (that is, in the case where
∀i, p′i = 0), the economic soundness condition can be expressed as I < 1

2 p|T |, and can be
interpreted as saying that the total collective benefit of causing the oracle to lie is less than half
of the market cap of the reporting pool.

The motivation behind this definition is as follows. In order for the oracle A0 to return a
false outcome in response to the ith oracle query, at least half of all tokens in the ith reporting
pool—that is, at least 1

2 |Ti| tokens—must be used to lie or abstain (otherwise, the True outcome
would necessarily receive the most votes and thus become the winner). Each token used to lie or
abstain loses pi+1− p′i+1 in value. Thus the minimum total cost of causing A0 to return a false
outcome in response to the ith oracle query is given by 1

2(pi+1− p′i+1)|Ti|.
Colloquially, then, the economic soundness condition is satisfied exactly when the total

cost of forcing the oracle to lie exceeds the total collective benefit—including all “extraneous”
benefit—from doing so. As we will show, this condition is necessary and sufficient for A0 to
be an incentive compatible and individually rational implementation of our desired truth-telling
decision function.

It is not surprising that our most important results are predicated on the economic soundness
condition being satisfied. All incentive compatible oracles—even centralized ones—necessarily
have an analogous soundness condition: if the cost of causing the oracle to lie is less than one
could steal by doing so, it would be irrational not to cause the oracle to lie. Unsurprising as
this may be, it is important not to take economic soundness for granted. We are not, in general,
guaranteed to have the economic soundness condition be satisfied, even if the oracle has been
reporting True outcomes since its genesis. We investigate the conditions under which we may
expect the economic soundness condition to be satisfied in practice in section 5.5.
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5.3. Incentive Compatibility—In this section we show that, when the economic soundness
condition is satisfied, the simple oracle A0 is an incentive compatible implementation of our
desired truth-telling decision function. In other words, when the economic soundness condition
is satisfied and all players are behaving the way we want them to, no player can do better for
themselves by unilaterally deviating from that behavior. We do this in the standard way, by
showing that the resulting game contains an equilibrium strategy profile that results in the oracle
deciding the True outcome.

The strategy spaces in the stage game are modeled as follows. Each stage game is associated
with an oracle query which comes with an event E and an outcome space Ω. The strategy
set for each reporter is {True,False}, modeling the choice reporters make during a fork. The
strategy True represents the reporter choosing to report the True outcome during the fork,
while the strategy False represents the reporter abstaining or reporting a false outcome during
the fork. Afterwards, the querier chooses how to update the reporting pool by choosing from
{PunishFalse,PunishTrue}, where PunishFalse represents the querier removing from the re-
porting pool any tokens used to abstain or lie during the fork, and PunishTrue represents the
querier removing from the reporting pool any tokens used to report the True outcome during the
fork.

Definition (Honest play). Let honest play refer to the strategy profile in which every reporter
always chooses to report True and the querier always chooses the move PunishFalse.

The following two theorems establish that honest play is in equilibrium in the stage game.

Theorem 5.1. If the economic soundness condition is satisfied, then always choosing the move
PunishFalse is a best response by the querier to any strategy profile chosen by the reporters that
results in the oracle returning True.

Proof. See Appendix A.

Theorem 5.2. If the economic soundness condition is satisfied and the querier always chooses
the move PunishFalse, then reporting the True outcome is always the best response by every
individual reporter.

Proof. See Appendix A.
As an immediate result of Theorems 5.1 and 5.2, we can see that honest play is in equilibrium

in the stage game. Moreover, the payouts (in the stage game) to all players during honest play
are strictly greater than their minmax payouts: the minmax payout is φ − r j|T | for the individual
reporter j, and −φ − I for the querier. So, by Friedman’s folk theorem,8 honest play is also
in equilibrium in the repeated game. (In fact, the folk theorems tell us that honest play is in
equilibrium in the infinitely repeated game without discounting, the infinitely repeated game with
discounting, and the finitely repeated game without discounting. This is nice, as it means our
incentive compatibility result is robust against our choice of repeated-game model.) In other
words, no individual player has any incentive to deviate from honest-play, and so our mechanism
is incentive compatible.

Theorem 5.3. If the economic soundness condition is satisfied, then A0 is an incentive compatible
mechanism that decides the True outcomes of oracle queries.

Proof. The result follows immediately from Theorems 5.1 and 5.2.
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Fig. 1. The stage game shown in extensive form, as described in the proof of Theorem 5.1,
with the set of reporters modeled as a single player (r) who may unilaterally decide the
outcome of the oracle at the minimum possible cost. The querier (q) then decides which set of
coins to remove from the reporting pool. Observe that, at each move, the querier is indifferent
among her available moves, and therefore it is trivially the case that every response by the
querier is a best response and every Nash equilibrium is a subgame-perfect Nash equilibrium.
This game is shown again in normal form in Figure 2.

5.4. Individual rationality—We have shown that when the economic soundness condition is
satisfied, honest-play is in equilibrium for all players engaging with the oracle. Of course, in the
real world, we cannot force agents to engage with our mechanism. If they are to engage, they
must do so willingly. Since players have the choice of not participating, we want our mechanism
to satisfy an individual rationality constraint. That is, we want it to be the case that the outcomes
for honest-play are better (or at least not worse) for all players than they would achieve by not
playing at all. To show that our mechanism is individually rational, we must show that the
equilibrium at honest-play results in a non-negative payout for all players.

As in the proof of Theorem 5.1, let b denote the benefit the querier receives when the oracle
returns the True outcome, and recall that φ denotes the fee paid by the querier to the reporters.

Theorem 5.4. If the economic soundness condition is satisfied and b > φ , then the simple oracle
A0 is individually rational.
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Fig. 2. The stage game from Figure 1 shown in normal form. The set of reporters (modeled
here as a single player as described in the proof of Theorem 5.1) is the row player and the
querier is the column player. The pure strategy Nash equilibria—when the economic sound-
ness condition is satisfied—are highlighted in gray.

Proof. Suppose the economic soundness condition is satisfied. Then, since honest play is in
equilibrium, it will suffice to show that the outcomes for each player during honest play are
non-negative. From Figure 2 we can observe that honest play results in individual reporters being
paid a pro rata share of φ , which is always non-negative. Also from Figure 2 we can see that
the querier receives a payout of −φ + b, which is non-negative when b > φ . Thus, when the
economic soundness condition is satisfied and b > φ , the payout to all players is non-negative
during honest play.

5.5. Tenability of Economic Soundness—Since all of the results above depend upon the
economic soundness condition being satisfied, we will now examine whether it is reasonable to
expect the economic soundness condition to be satisfied in practice. Naturally, speculation on the
future value of a token can result in arbitrarily high token prices, so it is certainly always possible
for the economic soundness condition to be satisfied. However, we are interested in whether the
reporting fees alone can justify a high enough token price for the economic soundness condition
to be satisfied.

In particular, we want to know whether the reporting fee can, simultaneously, be small enough
that the querier is willing to pay it and large enough to make the market price of tokens (and
therefore the market cap of the reporting pool) high enough to satisfy the economic soundness
condition. As we will show, this depends very much on the market’s current appetite for risk,
how the reporting fee is chosen (as a function of I and time), and how high a fee the queriers are
willing to bear.

To aid the discussion, consider a betting platform that uses an instance of the oracle A0 to
report the outcomes of national elections. At any given time, the total value of all open bets
on the platform is referred to as the open interest, which is the maximum benefit that the set
of reporters could gain by making the oracle lie: malicious reporters can steal open interest by
betting on low-likelihood outcomes and then forcing the oracle to resolve to the outcome on
which they bet. So, in this case, I is the open interest.

To consider the simplest case, suppose that the querier (which, in this case, is the betting
platform) always chooses PunishFalse, and that any tokens used to lie have zero value (that
is, ∀i, p′i = 0). Thus the minimum cost of causing the oracle to lie is 1

2 p|T | and the economic
soundness condition is satisfied if and only if I < 1

2 p|T |.
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Now suppose the betting platform charges the bettors a fee that is some percentage x of their
bet size. Every bet incurs a fee, and all fees collected by the platform will be pooled together
and used as the reporting fee when it queries the oracle to decide the outcome of an election.
So φ = xI for every oracle query. For simplicity, assume that every election results in the same
volume of bets, and so I remains constant over multiple oracle queries.

Finally, let the market’s expected current yield for tokens in T be Y . In other words, we
expect the market to behave in such a way that Y = A

p|T | , where A is the sum of all reporting
fees collected over one year. Therefore, if the betting platform makes n oracle queries in one
year, then A = nxI, and market behavior will result in a token price of p = nxI

Y |T | . Using this value
for p in the definition of the economic soundness condition, we can see that we may expect the
economic soundness condition to be satisfied when x > 2Y

n .
As we can see from this simple example alone, the tenability of the economic soundness

condition is dependent on factors outside of the implementer’s control. While the creators of the
betting platform may be able to exert control over the fees they charge (x) and the number of
times that they query the oracle in a given year (n), they cannot control the market’s expectation
of current yield (Y ) or whether not their users are willing to pay a high enough fee (x) to satisfy
the condition x > 2Y

n .

Example 1: Suppose the market expects a current yield of 30% for holding tokens in T , and
the betting platform is making one oracle query per month (so that Y = 0.3 and n = 12). Then if
the bettors are unwilling to pay a fee of 5% on their bets, we should not expect the economic
soundness condition to be satisfied.

Example 2: Suppose the market expects a current yield of 25% and the betting platform
is making one oracle query per week (so that Y = 0.25 and n = 52). Then if the bettors are
willing to pay a fee of 1% on their bets, we should expect the economic soundness condition to
be satisfied.

In conclusion, we are not guaranteed to have the economic soundness condition be satisfied
in general. Under some conditions it is satisfied quite easily, and under other conditions it is
not. Moreover, the tenability of the economic soundness condition depends on some factors
outside of the oracle implementer’s control, such as the market’s appetite for current yield and
user tolerance to the minimum required fees.

In plain terms, this is not a simple, drop-in “oracle solution” that is certain to work for any
project that needs an oracle. Projects that are considering implementing the oracles presented in
this paper should give special consideration to how they structure their fees, the market’s appetite
for current yield, and whether their users will be tolerant of the minimum required fees.

5.6. Weaknesses—This mechanism achieves only a weak version incentive compatibility
(Bayesian-Nash incentive compatibility). While honest play is in equilibrium, and while its result-
ing equilibrium is Pareto efficient and subgame-perfect, the strategies played during honest play
are not strictly dominant. Indeed, the game that arises from A0 has no strictly dominant strategies
for any of the players at all. Reporting truthfully is a best response for individual reporters only
if the querier always chooses PunishFalse. However, always choosing PunishFalse is only a
weakly dominant strategy for the querier.

The truthfulness of A0 hinges upon the querier choosing one particular weakly dominant
strategy from among several available to her. As we have shown above, it is rational for her to
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always choose PunishFalse during each stage game. However, it is also rational for her to choose
one of her other weakly dominant strategies (in the stage game setting). After all, as shown in
Figure 1, the querier is indifferent between her available moves during the stage game. It is only
when the querier considers the larger repeated game setting that always choosing PunishFalse
becomes more appealing than the alternatives.

Of course, queriers are unlikely to engage with the mechanism at all unless they intend to
engage in honest play. This is because the mechanism is not individually rational outside of
honest play, and so the querier would do better for herself by not engaging with the mechanism
at all than to engage and play dishonestly. Nevertheless, the situation would be greatly improved
if the querier’s preference for honest play were strict.

An ideal mechanism would be dominant strategy incentive compatible (DSIC), so that players
could choose to play honestly without having to give any consideration to the behavior of other
players. It is an open question whether there exists such a mechanism that can be implemented in
a setting where the players have common knowledge of the truth but the center of the mechanism
(i.e., the smart contract) does not.

A less ambitious goal would be to design a variation of A0 for which always choosing
PunishFalse were a strictly dominant strategy for the querier in the stage game, even if there
were still no dominant strategy available for individual reporters. While reporters would still have
to reason about the future behavior of the querier before deciding whether to report truthfully,
the resulting stage game would have just one equilibrium: honest play. This would be a clear
improvement upon A0, as A0 results in multiple equilibria in the stage game—only one of which
results in the oracle returning True. As with the decentralized DSIC mechanism, it is an open
question whether there exists a mechanism with this property that can be implemented in the
setting where the center of the mechanism (i.e., the smart contract) does not possess common
knowledge of truth.

Finally, this approach necessitates that the economic soundness condition be satisfied. As we
saw in section 5.5, this condition is dependent upon things outside of the oracle implementer’s
control. It is impossible, for example, for the oracle implementer to prevent third-party derivatives
being resolved by the oracle’s outputs. These derivative bets can be made without the secondary
bettors paying any fee to the reporters. As a result, third-party derivatives increase the value of I
but may not increase the market cap of reporting tokens, and thereby jeopardize the incentive
compatibility of the oracle. This is known as the “parasite problem” and we conjecture that it is
unsolvable for all public oracles, both centralized and decentralized.

6. Scaling Strategy

Real life execution of the simple oracle A0 requires that participants agree on the state of the
reporting pool T . The correct state of the reporting pool cannot be verified by a smart contract
alone—in particular, determining which outcomes were True for each previous oracle query
cannot be done by a smart contract. It requires a posteriori knowledge of what was common
knowledge during each of the previous calls of F by A0. To verify the correctness of the current
reporting pool, a new user must examine the output of every previous call of F by the oracle.
For each Ω-partition returned by F , the new user must decide which set of tokens corresponds
to CTrue. Only then can they determine the correct state of the current reporting pool. In brief,
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on-boarding a new user requires the new user to manually determine the True outcome for every
previous oracle query. This does not scale.

In the following sections, we define and analyze oracles that do not need to call F on every
oracle query. Instead, we allow queriers to submit a proposed outcome along with their oracle
query, and we give the reporters an opportunity to dispute the proposed outcome if they think it
is false. If the proposed outcome is not disputed, then the oracle returns the proposed outcome
without having to call the fork. (Our assumption that the smart contract platform is censorship
resistant is critical here. An attacker that can censor dispute transactions can cause these new
oracles to return false outcomes by preventing reporters from disputing false proposed outcomes.)
If the proposed outcome is disputed, then the oracle uses the fork to determine which outcome to
return, just like A0.

This creates a subgame for each oracle query, where the querier chooses whether to submit
their query with the True outcome or a false outcome as the proposed outcome, then reporters
decide whether or not to dispute the proposed outcome. We leverage the credible threat of a fork
along with some bonds to make honest play incentive compatible in the subgame. The result is
that, when the economic soundness condition is satisfied, the oracle is expected to return the
True outcome of a query without having to call F , so the reporting pool does not get updated
after every oracle query. On-boarding new users does not require them to manually verify the
results of every previous oracle query, but only those which required a fork.

7. An Oracle with a Single Dispute Round, A1

7.1. Construction—For this new oracle we introduce a dispute round which leverages bonds
and the credible threat of the fork. When the oracle is queried, the query must be accompanied
by a tentative outcome, ω̂ ∈Ω, and some initial stake on that outcome. Then begins a period of
time, referred to as a dispute round, during which token owners have the opportunity to dispute
the tentative outcome in favor of some other outcome in Ω by adding some specific amount of
stake to their chosen outcome.

If no dispute takes place during the dispute round, then the oracle returns ω̂ and the initial
stake is returned to its original owner. Otherwise the oracle calls F to determine the winning
outcome, just as before. Any stake—whether it was the initial stake that came with the oracle
query or stake placed during the dispute round—that was placed on a losing outcome is transferred
to those who staked on the winning outcome. In this way, token owners are incentivized to
dispute any tentative outcomes that would not win a fork in favor of outcomes that would win a
fork.

We will show that, at equilibrium, the oracle returns the True outcome without the reporting
pool having to be updated.

Later in this section we will construct an oracle that uses a single dispute round and discuss
its strengths and limitations. In the following section, we will define an oracle that uses multiple
dispute rounds to address those limitations.

First, we define a few algorithms that will be used as subroutines in the following oracles.

Definition (DisputeRound). The algorithm DisputeRound accepts a tuple (E,Ω, ω̂,D,s), where
E is an event, Ω is an outcomes space of E, ω̂ ∈Ω is a tentative outcome, D= (Dω)ω∈Ω∪{Abstain}
is an Ω-partition of the set of tokens that have been staked on some outcome ω ∈ Ω during
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the present oracle query, and s is the amount of dispute stake required to dispute the tentative
outcome. We let d = |Dω̂ |, and we require that Dω̂ not be empty. That is, we require that the
dispute round begins with some positive amount, d > 0 of stake on the tentative outcome.

Let T be the set of tokens in the reporting pool. All owners of tokens in T \
⋃

D—that is,
tokens that are in the reporting pool but have not already been used to stake on some outcome
during the current oracle query9—have the opportunity (but not the obligation) to dispute the
tentative outcome in favor of some other outcome in Ω.

A dispute consists of staking s reporting tokens (referred to as dispute stake in this context)
on some outcome other than the current tentative outcome. In this paper, for simplicity, we
say that disputes require double the stake on the current tentative outcome. Our results remain
unchanged if disputes are be made to be α times the stake on the current tentative outcome, so
long as α > 1.

Dispute rounds have a fixed maximum time limit. If a dispute occurs in favor of outcome
ω before the time limit, then DisputeRound updates Dω to include the new dispute stake and
returns (ω,D,TRUE). Otherwise, DisputeRound does not modify any cell of the Ω-partition D
and returns (ω̂,D,FALSE).

At most one token holder may actually dispute a tentative outcome during any given dispute
round. That is, while all token holders have the opportunity to dispute a tentative outcome, at
most one token holder can actually perform the dispute.

Definition (Distribute). The algorithm Distribute accepts as input a tuple (D, ω̂) where D is an
Ω-partition (of dispute stake) and ω̂ ∈Ω∪{Abstain}. The algorithm pays out all the tokens in⋃

D to those reporters who own tokens in Dω̂ , in proportion to the number of tokens they own in
Dω̂ . That is, if a token holder owns X tokens in Dω̂ then Distribute will pay that token holder

X
|Dω̂ |
|
⋃

D| tokens.

Colloquially, Distribute simply distributes the tokens in D, pro rata, to the reporters who
staked on outcome ω̂ .

Definition (ChoiceByFork). The use of the fork as a fallback for deciding the winning outcome
is expressed in the subroutine ChoiceByFork, described in pseudocode here:

def ChoiceByFork(E,Ω,T,D):
//call the fork but let only non -dispute stake participate

{CAbstain,Cω1 , . . . ,Cω|Ω|}← F (E,Ω,T \
⋃
D)

// select winning outcome (remembering to include the dispute

stake)

ω̂ ← PluralityWinner({CAbstain∪DAbstain,Cω1 ∪Dω1 , . . . ,Cω|Ω| ∪Dω|Ω|})

// redistribute dispute stake

Distribute(D, ω̂)

//put all dispute stake in the cell corresponding to the

winning outcome

Cω̂ ←
⋃
D∪Cω̂

// return winning outcome and the Ω-partition

return (ω̂,{CAbstain,Cω1 , . . . ,Cω|Ω|})
enddef
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With these definitions in place, we are ready to describe the oracle A1—the oracle with a
single dispute round. A query to A1 must come along with a tentative outcome ω̂ ∈ Ω and
some initial stake of d > 0 tokens, which we denote {t1, . . . , td}. When the query is received,
all reporters have an opportunity to dispute the tentative outcome by staking 2d tokens on any
outcome other than the tentative outcome. If no dispute occurs, the oracle returns the tentative
outcome and returns the initial stake back to the querier. If some reporter does dispute the
tentative outcome, then the oracle calls the fork to determine the winner.

In the event that the tentative outcome is disputed, the oracle will use the fork to determine
the winning outcome, just as we did with A0. We require that any stake that was placed in favor
of some outcome during a dispute round must be used to report the same outcome during the fork.
That is, if a reporter stakes 10 tokens on outcome ω1 during a dispute round and then the oracle
calls the fork, then that player has no choice but to use those 10 tokens to report outcome ω1

during the fork. In other words, if a player has staked on an outcome, then they remain committed
to that outcome in the event that a fork is called.

In the event that the oracle calls the fork, the oracle returns whatever outcome wins the
fork (just as with A0). Additionally, the initial stake and the dispute stake are redistributed to
whichever players staked on the outcome that won the fork. In pseudocode:

// initial state

C0
True← Tgenesis

i← 0

def A1(E,Ω,φ , ω̂,{t1, . . . , td}):
// increment query counter

i← i+1

// update the reporting pool

//only truth -tellers from previous query remain in pool

Ti←Ci−1
True

//pay owners of tokens in Ti
Pay(Ti,φ)

//init Ω-partition of dispute stake

for ω ∈Ω∪{Abstain}:
if ω == ω̂:

Dω ←{t1, . . . , td}
else:

Dω ← /0
endif

D←{DAbstain,Dω1 , . . . ,Dω|Ω|}
endfor

//have a dispute round

(ω̂i,D,DISPUTED)← DisputeRound(E,Ω, ω̂,D,2d)

//if there was no dispute

if DISPUTED== FALSE:

//then give the initial stake back to the querier

Distribute(D, ω̂i)
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//no reporting tokens are removed from the reporting pool

Ci
True← Ti

// return tentative outcome

return ω̂i

//else if there was a dispute

elseif DISPUTED== TRUE:

// resort to fork

(ω̂i,{Ci
Abstain,C

i
ω1
, . . . ,Ci

ω|Ω|
})←ChoiceByFork(E,Ω,Ti,D)

// return outcome that won the fork

return ω̂i

endif

enddef

8. Analysis of A1

8.1. Introduction—We want to show that if the economic soundness condition is satisfied
then, at equilibrium, the oracle A1 returns the True outcome of an oracle query without having
to invoke a fork. In section 5.3 we showed that honest play during a fork is in equilibrium when
the economic soundness condition is satisfied. So for the purposes of this section it will suffice to
show that, if honest play is expected during a fork, then there exists a unique subgame-perfect
equilibrium in the subgame induced by the dispute round for which:
• The querier submits their query with the True outcome as the tentative outcome
• When the tentative outcome is the True outcome, it is not disputed
• When a tentative outcome is false, it is disputed in favor of the True outcome

We will show that, when honest play is expected during forks, there exists a unique subgame-
perfect equilibrium in the dispute round game that satisfies these three properties.

8.2. Unique Equilibrium—The dispute round game is modeled as a sequential game in
which the querier moves first by choosing whether to submit their query with the True outcome
as the tentative outcome, or some false outcome as the tentative outcome. The querier necessarily
stakes d tokens on this tentative outcome. Then, the reporters choose whether or not to dispute
the tentative outcome. If a reporter chooses to dispute the tentative outcome, they must do so by
staking 2d tokens in favor of some other outcome. We are interested in the case where honest
play is expected during a fork, so any play that results in a fork pays out as if the True outcome
were returned.

Theorem 8.1. When honest play is expected during a fork, there exists a unique subgame-perfect
equilibrium in the single dispute round game. The unique subgame-perfect equilibrium results in
the following behavior:
• The querier submits their query with the True outcome as the tentative outcome
• If the querier submits the True outcome as the tentative outcome, then no reporter

disputes
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• If the querier submits a false outcome as the tentative outcome, then there exists a reporter
who disputes in favor of the True outcome

Proof. The strategic decisions facing the querier and an arbitrary reporter during the single
dispute round game are illustrated in Figure 3. Reducing the chance moves to their expected
values results in a simplified game tree shown in Figure 4, which is solved by backward induction
to see the unique subgame-perfect equilibrium (also shown in Figure 4), which results in our
three desired behaviors.

Fig. 3. The single dispute round game in extensive form. The value d is the amount of stake
on the initial tentative outcome. The value b is the benefit to player 1 if the oracle returns a
false outcome. Player 2 is an arbitrary single reporter, and the effects of the decisions made
by the remaining reporters are modeled as chance moves.

By Theorem 8.1, our desired player behavior is incentive compatible when honest play
occurs during a fork. By Theorem 5.3, honest play during a fork is incentive compatible when
the economic soundness condition is satisfied. It follows that, when the economic soundness
condition is satisfied, the oracle A1 is an incentive compatible implementation of our desired
truth-telling function that does not need to call the fork on every oracle query.

Moreover, one can quickly verify that A1 is individually rational by observing that the
payouts for all players are non-negative when playing according to the unique subgame-perfect
equilibrium shown in Figure 4.

8.3. Weakness—While A1 does satisfy all of our stated design goals, it has the unfortunate
property that an attacker can grief honest participants by intentionally causing many forks.
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Fig. 4. The single dispute round game from Figure 3 with chance moves replaced with ex-
pected payouts. The unique subgame-perfect equilibrium is derived via backward induction
and is shown with doubled edges.

While such behavior would be irrational in the context of our simple model, it may well be
incentivized by extraneous circumstances when interacting with A1 in the real world. (For
example, a competing oracle platform may be financially motivated to damage the scalability
properties of A1 by intentionally causing many forks—perhaps in the hopes of steering new users
to their own platform.) We address this weakness in the following section.

9. An Oracle with Multiple Dispute Rounds, A2

9.1. Motivation—Note that the minimum cost of causing a fork during a call of A1 is exactly
the same as the cost of querying A1 with a false outcome. An attacker who desires to cause a fork
(so as to negatively impact scalability) can simply query the oracle with a false tentative outcome.
This outcome will be disputed, causing a fork, and costing the attacker d tokens per query.

If d is small, then it is cheap for honest users to query the oracle, but it is also cheap
for an attacker to cause many forks. If d is large, then causing many forks is expensive, but
the capital needed to query the oracle in the first place may be prohibitive for honest users.
Oracle implementers may want to keep the capital required to query the oracle small, while also
increasing the cost of causing a fork.

There may be many ways to achieve this property.10 Here we will focus on just one: using
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multiple consecutive dispute rounds.
9.2. Construction—For this new oracle we introduce a dispute sequence, which is simply

a finite sequence of dispute rounds. As before, the query must be accompanied by a tentative
outcome, ω̂1 ∈Ω, and some initial stake of d tokens. Then the dispute sequence begins.

During the first dispute round in the dispute sequence, token holders have an opportunity
to dispute the current tentative outcome by staking 2d tokens on any outcome other than the
current tentative outcome. If nobody disputes ω̂1, then the d tokens are returned to the querier,
the dispute sequence ends, and the oracle outputs ω̂1.

However, if ω̂1 is disputed, then a new dispute round begins, with the newly championed
outcome, ω̂2, as the tentative outcome for the new dispute round. Once again, all token holders
have the opportunity to dispute the new tentative outcome, ω̂2, in favor of any other outcome—but
this time they are required to stake 4d tokens on the newly championed outcome.

This continues either until some tentative outcome survives a dispute round without being
disputed, or until the dispute stake posted by a disputer reaches some threshold M (a constant
chosen by the implementers of the oracle). If the former occurs, the oracle returns the tentative
outcome without calling the fork. If the latter, then the oracle calls the fork, just as was done for
A1.

In general, the nth dispute round has tentative outcome ω̂n, and token holders can dispute
ω̂n in favor of any other outcome by staking 2n−1d tokens on the newly championed outcome.
If no such dispute occurs then the dispute sequence ends, the oracle will output ω̂n, and all
token holders who have staked on ω̂n (during any dispute round) will receive their stake back,
in addition to receiving a pro rata share of all stake that was staked on outcomes other than ω̂n

during any of the dispute rounds. If a dispute does occur, and the dispute stake was below the
threshold (that is, if 2nd < M), then another dispute round begins. And finally, if a dispute does
occur, and if the dispute stake has met the threshold (that is, if 2nd ≥M), then the oracle resolves
via the fork (just as with A1), and those who staked on the winning outcome receive a pro rata
share of all the stake that was staked on losing outcomes. The dispute sequence is formalized
with the following definition.

Definition (DisputeSequence). The algorithm DisputeSequence accepts as input (E,Ω, ω̂,D),
where E is an event, Ω is an outcomes space of E, ω̂ ∈ Ω is a tentative outcome, and D =

(Dω)ω∈Ω∪{Abstain} is an Ω-partition of the set of tokens that have been staked on some outcome
ω ∈Ω during the present oracle query.

The algorithm runs a sequence of dispute rounds, terminating either when a dispute round
completes without the tentative outcome being disputed, or until a dispute occurs for which the
dispute stake is at least M. The algorithm returns (ω,D,FALSE,FALSE) if no dispute occurred
in any dispute round. It returns (ω,D,TRUE,FALSE) if at least one dispute occurred, but no
dispute occurred with dispute stake at least M. Finally, it returns (ω,D,TRUE,TRUE) if there was
a dispute with dispute stake at least M. In pseudocode:

def DisputeSequence(E,Ω, ω̂1,D):
n← 1
d← |Dω̂ |
EVERDISPUTED← FALSE

while 2n−1d < M
//have a dispute round
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(ω̂n+1,D,DISPUTED)← DisputeRound(E,Ω, ω̂n,D,2nd)

//if there was no dispute

if DISPUTED== FALSE:

return (ω̂n+1,D,EVERDISPUTED,FALSE)

else: // there was a dispute

EVERDISPUTED← TRUE

endif

n← n+1
endwhile

return (ω̂n,D,TRUE,TRUE)
enddef

Next we define the algorithm BurnAndDistribute, which behaves the same as Distribute
with the exception that it burns some of the dispute stake before distributing the rest, pro rata, to
those that disputed in favor of the chosen outcome.

Definition (BurnAndDistribute). The algorithm BurnAndDistribute is called in the context of a
dispute sequence. It accepts as input a tuple, (δ ,D, ω̂), where δ is a positive number (chosen
by the oracle designer), D is an Ω-partition of dispute stake where 0 < δ < |

⋃
D|, and ω̂ is an

outcome. The algorithm burns (by sending to a provably unspendable address) δ tokens from⋃
D and distributes the remaining tokens to the reporters, proportional to the number of tokens

they staked in favor of ω̂ .

Next, we define a small variation of ChoiceByFork that burns some amount of tokens before
distributing the rest to token owners. Without such a burn, an attacker with access to a large
amount of capital could cause forks without cost, by iteratively disputing every tentative outcome
until a fork is initiated. (As long as the final tentative outcome is True the attacker would
recoup—as a reward for staking on True—all the stake they lost by staking on false outcomes.)

Definition (ChoiceByFork′). The algorithm ChoiceByFork′ is a variation of ChoiceByFork which
simply calls BurnAndDistribute(|

⋃
D|− 7

5 |Dω̂ |,D, ω̂) instead of Distribute(D, ω̂). Its purpose
is to guarantee an ROI of 40% to all token holders who disputed an outcome in favor of ω̂ . (Note
that, while we use a 40% ROI in this paper, our results hold for any ROI strictly greater than 0%
and strictly less than 50%.)

With these definitions in place, we are ready to describe A2, which behaves exactly the same
as A1 with the exception that A2 uses DisputeSequence, ChoiceByFork′, and BurnAndDistribute
in lieu of DisputeRound, ChoiceByFork, and Distribute. In pseudocode:

// initial state

C0
True← Tgenesis

i← 0

def A2(E,Ω,φ , ω̂,{t1, . . . , td}):
// increment query counter

i← i+1

// update the reporting pool
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//only truth -tellers from previous query remain in pool

Ti←Ci−1
True

//pay owners of tokens in Ti
Pay(Ti,φ)

//init Ω-partition of dispute stake

for ω ∈Ω∪{Abstain}:
if ω == ω̂:

Dω ←{t1, . . . , td}
else:

Dω ← /0
endif

D←{DAbstain,Dω1 , . . . ,Dω|Ω|}
endfor

//run the dispute sequence

(ω̂i,D,EVERDISPUTED,BIGDISPUTE)← DisputeSequence(E,Ω, ω̂,D)

//if there was a large enough dispute

if BIGDISPUTE== TRUE:

// resort to fork

(ω̂i,{Ci
Abstain,C

i
ω1
, . . . ,Ci

ω|Ω|
})←ChoiceByFork′(E,Ω,Ti,D)

// return outcome that won the fork

return ω̂i
endif

//if there was no dispute

if EVERDISPUTED== FALSE:

// Give the initial stake back to the querier

Distribute(D, ω̂)

else: //there was a dispute but not with dispute stake greater

than M
//burn some of the dispute stake11 and give the rest to the

winners.

BurnAndDistribute(|
⋃
D|− 7

5 |Dω̂i |,D, ω̂i)
endif

//no reporting tokens are removed from the reporting pool

Ci
True← Ti

// return tentative outcome

return ω̂i
enddef

10. Analysis of A2

Observe that the only difference between A1 and A2 is that the latter runs DisputeSequence,
ChoiceByFork′, and BurnAndDistribute whereas the former runs DisputeRound, ChoiceByFork,
and Distribute. As before, we want to show that if the economic soundness condition is satisfied
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then, at equilibrium, the oracle A2 is expected to return the True outcome of an oracle query
without having to invoking a fork. In particular, we want to show that, if honest play is expected
during a fork, then there exists a unique subgame-perfect equilibrium in the subgame induced by
the dispute sequence for which:
• The querier submits their query with the True outcome as the tentative outcome
• When the tentative outcome for any dispute round is the True outcome, it is not disputed
• When a tentative outcome for any given dispute round is false, it is disputed in favor of

the True outcome
As we will show in the following theorem, when honest play is expected during forks, and

when it is common knowledge that there exists at least one token holder who does not dispute
a true tentative outcome in favor a false outcome, then there exists a unique subgame-perfect
equilibrium in the dispute sequence game that satisfies these three properties.

Theorem 10.1. If honest play is expected during a fork, and if it is common knowledge among
token holders that there exists at least one token holder who has not disputed in favor of a
false outcome, and if the return for disputing false outcomes is chosen so that 0 < a < 1

2 , then
there exists a unique subgame-perfect equilibrium in the dispute sequence game. The unique
subgame-perfect equilibrium results in the following behavior:
• The querier submits their query with the True outcome as the tentative outcome
• If, during any dispute round, the True outcome is the tentative outcome, then no reporter

is expected to dispute
• If, during any dispute round, a false outcome is the tentative outcome, then there exists a

reporter whom we expect to dispute in favor of the True outcome

Proof. See Appendix A.
In addition to being incentive compatible and individually rational, this oracle can be made

expensive to grief while remaining cheap to query. This is achieved via a judicious choice of the
parameters d, M, and the proportion of tokens burned after each dispute. It is important to note,
however, that as the quantity M−d increases, so do the number of dispute rounds required to
initiate a fork. Thus the maximum amount of time it can take for the oracle to respond to a query
increases as the gap between d and M increases. Implementers of this oracle ought to keep this
point in mind when choosing parameter values.

11. Incentive Compatibility in the Cooperative Model

Our main results show desirable properties in the non-cooperative model, but it is important
to verify that these properties hold in the cooperative model, where players can make binding
agreements—after all, what is a smart contract if not a binding agreement? That is, we must
verify that our results hold when users are able to collude and form coalitions. (This covers the
case where the querier is a reporter, because the utility of a “querier-reporter” is the sum of the
utilities of the querier role and the reporter role, and so a single “querier-reporter” is equivalent,
with respect to utility, to a coalition consisting of the querier and a separate reporter.) As we will
see, the forking mechanism is trivially secure against collusion when the economic soundness
condition is satisfied, and dispute rounds (and dispute sequences) are secure against collusion if
the tokens in T are sufficiently distributed.
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Fig. 5. The maximum total payout to a coalition that is both able to choose the outcome of
an (A0) oracle query and also includes the querier as a member. If the reporters cause the
oracle to lie, their benefit is the querier’s loss, so it is zero-sum: the benefits and losses to the
coalition exactly cancel out.

11.1. Coalitions in A0—First, consider the simple oracle A0 for which all oracle outputs are
determined via the fork. Recall from section 5 that the only strategy that is individually rational
for the querier is to choose PF,PF , and when the querier chooses this strategy, any coalition
of reporters large enough to unilaterally determine the output of the oracle has a unique best
response: make the oracle return True. It follows that any coalition that is powerful enough to
determine the outcome of the oracle query but which does not include the querier as a member
does strictly better by making the oracle return the True outcome.

Next, consider a coalition that is both powerful enough to determine the outcome of the oracle
and also includes the querier as a member. Such a coalition is able to unilaterally decide among
the 8 outcomes in Figure 2, and the payout to such a coalition is at most the sum of the payouts
for the reporters and the querier for their chosen outcome. The maximum payouts for such a
coalition are shown in Figure 5. Note that the maximum payouts (assuming b > 0) occur when
the oracle returns the True outcome. Thus, any coalition that is powerful enough to decide the
outcome of the oracle query does best when the oracle returns the True outcome.

When the economic soundness condition is satisfied, the analysis is even more straightforward.
The economic soundness condition is satisfied exactly when the minimum cost of making the
oracle return a false outcome is greater than the maximum total collective benefit for doing so.
(Indeed, this is the entire motivation behind its definition.) If the economic soundness condition
is satisfied, then the cost to any coalition that makes the oracle lie is greater than the maximum
benefit that coalition could receive, and so by the pigeonhole principle the payout would not be
individually rational for at least one member of the coalition. Therefore, any imputation must
necessarily result in the oracle returning True.

11.2. Coalitions in A1 and A2—Next, consider oracles A1 and A2. For these oracles, there
are two ways to get a false response to a query: either via a fork or by having a false tentative
outcome go undisputed during a dispute round. For the reasons outlined in the previous section,
we expect any coalition deciding the outcome of the oracle via a fork to choose a behavior that
results in the oracle returning the True outcome. So, for this section, we turn our attention to
coalitions that may cause the oracle to return a false outcome by causing a false tentative outcome
to go undisputed during a dispute round. We will first consider coalitions in A1, and then show
that the strategic situation for coalitions in A2 can be reduced to those in A1. We will assume, for
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this entire section, that the economic soundness conditions is satisfied.
For A1, recall that, during the dispute round (in the non-cooperative model), every token

holder that controls at least 2d tokens in T has the opportunity to dispute the tentative outcome.
If they dispute the tentative outcome then they receive a benefit of a2d,12 and if they do not
dispute the outcome, they receive nothing. In order for the oracle to return a false outcome to
a valid oracle query without a fork, the querier must submit their query with a false tentative
outcome, and all token holders (either individuals or mutually disjoint coalitions) must choose
not to dispute the false tentative outcome. In order for such behavior to be incentive compatible,
each token holder would have to receive at least a2d when choosing not to dispute the false
tentative outcome.

Therefore, any coalition payout that would result in the oracle A1 returning a false outcome
to a valid query without a fork would necessarily payout out at least a2dn, where n is the number
of players (either individuals or mutually disjoint coalitions) that control at least 2d tokens in T .
In other words, the minimum cost of making A1 return a false outcome without causing a fork
is a2dn, because this is the total cost of bribing all other token holders to not dispute the false
tentative outcome.

As before, let I denote the maximum (gross) benefit a coalition could receive by having the
oracle return a false outcome to a valid oracle query. Then we can make the following simple
observation relating the distribution of tokens in T to the incentive compatibility of A1 in the
cooperative game-theoretic model: if I

a2d < n, then there does not exist any imputation for any
coalition that results in the oracle returning a false outcome to a valid oracle query without calling
the fork.

Colloquially, if the tokens in T are sufficiently distributed, then the cost of paying all necessary
token holders to not exercise their opportunity to dispute the false tentative outcome is greater
than the maximum benefit of doing so.

Finally, consider the oracle A2. In this oracle there are several dispute rounds, each of which
provides an opportunity for the oracle to return a false outcome without resorting to a fork.
Analogous to the analysis of A1, the kth dispute round requires a bond size of 2kd. Every player
with at least 2kd tokens in T would have the opportunity to dispute a false tentative outcome
during the kth dispute round. They would stand to gain a2kd for doing so, and would receive
no benefit if they chose not to dispute. Thus, any individually rational payout for any coalition
that would result in the oracle returning a false outcome in the kth dispute round (without calling
a fork) would cost the coalition at least a2kdn. Since such a coalition would receive a (gross)
benefit at most I for making the oracle return false, we make the following observation: if

I
a2kd < n then there does not exist any imputation for any coalition that results in the oracle
returning a false outcome to a valid oracle query without calling the fork.13 This is maximized
during the first dispute round, when the token distribution requirements for A2 are identical to
those in A1.

In conclusion, the oracles in this paper can be expected to behave as intended in the coop-
erative model. For the oracle A0 we need no further assumptions than those we made in the
non-cooperative model. For oracles A1 and A2, incentive compatibility in the cooperative model
requires that the tokens in the T be sufficiently distributed.
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12. Conclusion

We have introduced a new approach to decentralized oracle design—one that is not based
upon coordination games. We have presented three specific mechanisms which, under certain
reasonable economic conditions, have been shown to be incentive compatible and individually
rational in the non-cooperative model. Furthermore, we have shown that if the tokens in the
reporting pool are sufficiently distributed, the mechanisms are also incentive compatible in the
cooperative model.
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13 Notice that, as k grows, the token distribution burden is lessened. This is because the cost of bribing other
players to not exercise their ability to dispute a false tentative outcome grows exponentially with k.

14 Observe that this assumption is extremely conservative. A coalition of reporters would have to know the
querier’s chosen strategy in advance in order to guarantee such low costs. For example suppose the reporter
wanted to make the oracle return True while minimizing their cost of doing so. If the querier where going to
choose PunishTrue, then the reporter would minimize costs by voting for True with only half of the tokens in
the reporting pool. If the querier where going to choose PunishFalse, then the reporter would minimize costs
by voting for True with all of the tokens in the reporting pool. Here we are being extremely conservative and
are assuming that the reporter will always be able to minimize their costs no matter how the querier behaves.

15 Despite first appearances, we are not resting our fate on the hopes that just a single reporter will be motivated
to dispute a false tentative outcome. The situation is not so dire. Observe that, since the existence of this
reporter is common knowledge, all reporters expect that q= 1. Hence, in this case, disputing the false tentative
outcome is also the dominant choice—by quite a large margin—for all token holders, even if they hold the
maximum possible amount of false dispute stake.

16 As in the base case, we are not resting our fate on the hopes that just a single reporter will be motivated
to dispute a false tentative outcome. Since the existence of this reporter is common knowledge, all reporters
expect that q = 1.

Appendix A: Calculations

Theorem 5.1. If the economic soundness condition is satisfied, then always choosing the move
PunishFalse is a best response by the querier to any strategy profile chosen by the reporters that
results in the oracle returning True.

Proof. For the purposes of this proof, we will model the set of all reporters as a single player,
referred to here as “the reporter,” attempting to maximize its total payout. The reporter chooses
whether to make the oracle return the True outcome or some false outcome. (In this way, we
capture the set of all possible strategy profiles of actual reporters and separate them into those
that would cause the oracle to return the True outcome and those that would cause the oracle to
return some false outcome; this simplifies our analysis significantly.) We assume that the reporter
gets some benefit I > 0 if the oracle returns a false outcome, and that this benefit comes at the
expense of the querier. We further assume that the reporter will minimize their costs wherever
possible, so that the cost of causing the oracle to lie (when the querier chooses to PunishFalse)
is the minimum possible: 1

2(p− p′)|T |. We make a similar conservative assumption for the cost
of causing the oracle to return the True outcome when the querier chooses to PunishTrue.14 We
assume that the querier receives some benefit b > 0 if and only if the oracle returns the True
outcome. And finally, we note that the querier pays an oracle fee φ to the reporter no matter the
final outcome.

Given these payouts, the resulting sequential game is show in extensive form in Figure 1 and
in normal form in Figure 2.

When the economic soundness condition is satisfied, I− 1
2(p− p′)|T | < 0, and so (as can

be seen in Figures 1 and 2) the strategy profile (True,(PunishFalse,PunishFalse)) is a Pareto
efficient, subgame-perfect Nash equilibrium.

In other words, when the economic soundness condition is satisfied, always choosing the
move PunishFalse is a best response by the querier to any strategy profile of reporters that causes
the oracle to return True.
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Theorem 5.2. If the economic soundness condition is satisfied and the querier always chooses
the move PunishFalse, then reporting the True outcome is always the best response by every
individual reporter.

Proof. Suppose the economic soundness condition is satisfied and that the querier always chooses
PunishFalse. Let j be an arbitrary reporter. We will show that reporting True is the best response
by j no matter what choices are made by the remaining reporters.

Let r j denote the proportion of tokens in the reporting pool T that are owned by j. Recall
that each reporter always receives a pro rata share of the reporting fee φ . In particular, reporter j
always receives r jφ .

Since the querier is always choosing the move PunishFalse, the reporter j suffers a loss of
1
2(p− p′)r j|T | if they lie or abstain during a fork.

We assume that if the oracle returns a false outcome then all reporters who lied or abstained
will receive a pro rata share of I (the total benefit of causing the oracle to lie). We make the
conservative assumption that if the oracle is made to lie, then it was done at the minimum possible
total cost to the set of lying reporters. (This is conservative because it maximizes the benefit to a
lying reporter in the event that the oracle returns a false outcome.) That is, if the oracle returns a
false outcome, then just 1

2 |T | tokens were used to lie or abstain, and reporter j will receive 2r jI if
and only if j reported false or abstained during the fork.

The decision faced by reporter j is modeled with the decision tree shown in Figure 6 where
the outcome of the oracle is modeled as a chance move. Replacing the chance moves with their
expected values, we get the simplified decision tree in Figure 7, from which we can observe that
the payoff to j for reporting True is always r jφ and the expected payoff for lying or abstaining
is q(r jφ − (p− p′)r j|T |)+ (1− q)(r jφ + 2r jI− (p− p′)r j|T |). We need only show that the
expected payoff for lying or abstaining is always strictly less than r jφ .

Because the economic soundness condition is satisfied, the quantities −(p− p′)r j|T | and
2r jI− (p− p′)r j|T | are both negative. It follows that the quantities r jφ − (p− p′)r j|T | and
r jφ +2r jI− (p− p′)r j|T | are both strictly less than r jφ . Thus the expected payoff for lying or
abstaining is a convex combination of two values that are both strictly less than r jφ . Hence the
expected payout for lying or abstaining is strictly less than r jφ .

Therefore, if the economic soundness condition is satisfied and the querier always chooses
the move PunishFalse, then reporting the True outcome is always the best response by every
individual reporter.

Theorem 10.1. If honest play is expected during a fork, and if it is common knowledge among
token holders that there exists at least one token holder who has not disputed in favor of a
false outcome, and if the return for disputing false outcomes is chosen so that 0 < a < 1

2 , then
there exists a unique subgame-perfect equilibrium in the dispute sequence game. The unique
subgame-perfect equilibrium results in the following behavior:
• The querier submits their query with the True outcome as the tentative outcome
• If, during any dispute round, the True outcome is the tentative outcome, then no reporter

is expected to dispute
• If, during any dispute round, a false outcome is the tentative outcome, then there exists a

reporter whom we expect to dispute in favor of the True outcome
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Fig. 6. A decision tree modeling the decision faced by an individual reporter in the stage
game when the economic soundness condition is satisfied and the querier always chooses
the move PunishFalse. The effects of the choices of the remaining reporters are modeled
as chance moves. Figure 7 shows a simplified version of this decision tree with the chance
moves replaced by their expected values.
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Fig. 7. A simplified version of the decision tree from Figure 6, with the chance moves replaced
by their expected values. If the economic soundness condition is satisfied and the querier
always chooses the move PunishFalse, then reporting the True outcome has a strictly better
expected value than lying or abstaining.

Proof. We will argue by backward induction, beginning with the final dispute round that would
occur before a fork. We will show that in such a final dispute round, a True tentative outcome is
expected to go undisputed, while a false tentative outcome is expected to be disputed in favor of
the True outcome. This will form our base case.

Next, we will assume our induction hypothesis, which is that all dispute rounds after (and
including) the kth dispute round are expected to have their tentative outcomes go undisputed if
they are the True outcomes, and be disputed in favor of the True outcomes if they are false.

Then we will show that the induction hypothesis implies that we can expect the (k− 1)th
dispute round to have its tentative outcome go undisputed if it is the True outcome, and be
disputed in favor of the True outcome if it is false. The conclusion is that we can always expect—
in every dispute round—that the tentative outcome will go undisputed if it is the True outcome,
and will be disputed in favor of the True outcome if it is false. An immediate consequence is
that the querier is expected to submit their query with the True outcome as the initial tentative
outcome.

Base Case: Suppose the final dispute round in a dispute sequence occurs at round m. That is,
if the tentative outcome of round m is disputed, then A2 will call the fork. There are two cases:
either the tentative outcome at the beginning of the mth dispute round is the True outcome, or it
is the false outcome.

Case 1: The tentative outcome of the mth dispute round is the True outcome.
The strategic decision facing an arbitrary reporter, j, during the mth dispute round is shown in

Figure 8, with Tm denoting the total amount of dispute stake reporter j has placed on True by the
beginning of the mth dispute round, Fm denoting the total amount of dispute stake reporter j has
placed on the false outcome by the beginning of the mth dispute round, d denoting the amount
of the querier’s dispute stake, and a denoting the ROI received by reporters for holding dispute
stake on the outcome to which the oracle ultimately resolves. In our case, where each successive
dispute round requires 2 times the dispute stake of the previous round and we burn |

⋃
D|− 7

5 |Dω̂i |
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Fig. 8. A decision tree modeling the decision faced by an arbitrary reporter during a final
dispute round in a dispute sequence in the case where the tentative outcome is True. The
choice with the highest expected payouts is indicated by doubled lines.

before distributing rewards, a = 40%. (That is, if a reporter stakes X tokens disputing in favor
of True, and the oracle ultimately returns True, then the reporter will receive their original X
tokens back, in addition to 0.4X more.)

With this notation, disputing the tentative outcome requires a bond of size 2md. Thus, if
reporter j disputes the True tentative outcome, the oracle will call the fork, which is expected to
return True, which would result in reporter j receiving a net payout of aTm−Fm−2md. Similarly,
if the reporter does not dispute the tentative outcome, but someone else does, then the reporter
can expect to receive a net payout of aTm−Fm. Finally, if the reporter does not dispute the
tentative outcome and nobody else does either, then the reporter will receive aT m−Fm.

Thus it is always best for a reporter to not dispute the tentative outcome of the mth round if it
is True—no matter what other reporters choose to do.

Case 2: The tentative outcome of the mth dispute round is a false outcome.
The strategic decision facing an arbitrary reporter, j, during the mth dispute round is shown

in Figure 9, using the same notation as in case 1. In this case, if reporter j decides to dispute,
she can expect a payout of aTm−Fm + a2md. Her expected payout if she doesn’t dispute is
q(aTm−Fm)+(1−q)(aFm−Tm) where 0≤ q≤ 1.

Recall that, by assumption, there exists at least one token holder for whom Fm = 0. For such a
token holder, the expected payout for disputing is aTm +a2md, while the expected payout for not
disputing is qaTm− (1−q)(Tm). Thus, for this disputer, choosing to dispute is always a dominant
strategy, no matter what other reporters do, because for all q where 0 ≤ q ≤ 1, aTm +a2md is
greater than qaTm− (1− q)(Tm). So, we can always expect the false tentative outcome to be
disputed.15

This concludes our base case. We have shown that in a final dispute round, a True tentative
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Fig. 9. A decision tree modeling the decision faced by an arbitrary reporter during a final
dispute round in a dispute sequence in the case where the tentative outcome is false. By
assumption, there exists at least one reporter for whom Fm = 0. For such a reporters, disputing
is always the dominant choice, regardless of the value of q. Indeed, since this fact is common
knowledge among all reporters, all reporters know that q = 1. Hence, in this case, disputing
the false tentative outcome is the dominant choice for all reporters, even if they hold large
amounts of dispute stake on the false outcome.
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Fig. 10. A decision tree modeling the decision faced by an arbitrary reporter during the
(k− 1)th dispute round in the case where the tentative outcome is True and the induction
hypothesis is assumed. The choice with the highest expected payouts is indicated by doubled
lines

outcome is expected to go undisputed, while a false tentative outcome is expected to be disputed
in favor of the True outcome.

Induction Step: Now suppose, as our induction hypothesis, that for all k where 2≤ k ≤ m,
we can expect that in the kth dispute round a True tentative outcome will go undisputed, while a
false tentative outcome will be be disputed in favor of the True outcome. We need to show that
we can expect the same behavior in the (k−1)th dispute round. As before, we have two cases:
either the tentative outcome in the (k−1)th round is the True outcome, or it is a false outcome.

Case 1: The tentative outcome of the (k− 1)th dispute round is the True outcome. The
strategic decision facing an arbitrary reporter, j, during the (k−1)th dispute round in the case
where the tentative outcome is True is shown in Figure 10. Choosing not to dispute the True
tentative outcome results in the reporter receiving a payout of at least aTk−1−Fk−1. Choosing to
dispute the True tentative outcome gives the reporter a payout of at most aTk−1−Fk−1−2k−1d +

a2kd. When 0 < a < 1
2 , it is the case that −2k−1d + a2kd < 0, so choosing not to dispute the

True outcome is the strictly dominant decision, no matter what other reporters choose to do.
Case 2: The tentative outcome of (k−1)th dispute round is a false outcome. The strategic

decision facing an arbitrary reporter, j, during the (k−1)th dispute round in the case where the
tentative outcome is false is shown in Figure 11. Recall that, by assumption, there exists at least
one token holder for whom Fm = 0. For such a token holder, the expected payout for disputing
the false tentative outcome in favor of the True outcome is at least aTk−1 +a2k−1d, while the
expected payout for not disputing is at most aTk−1. Thus, for this disputer, choosing to dispute
the false tentative outcome in favor of the True outcome is always a strictly dominant strategy,
no matter what other reporters do. Hence, we can expect that the false tentative outcome will be
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Fig. 11. A decision tree modeling the decision faced by an arbitrary reporter during the
(k− 1)th dispute round in the case where the tentative outcome is false and the induction
hypothesis is assumed. The choice with the highest expected payout is indicated by doubled
lines.

disputed in favor of the True outcome.16

This completes the induction step and shows that in every dispute round of the dispute
sequence we can expect the tentative outcome to be disputed if and only if it is a false outcome. It
follows immediately that we can expect the querier to submit their query with the True outcome
as the initial tentative outcome.
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