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Abstract. The key cryptographic protocols used to secure the internet and financial transac-
tions of today are all susceptible to attack by the development of a sufficiently large quantum
computer. One particular area at risk is cryptocurrencies, a market currently worth over 100
billion USD. We investigate the risk posed to Bitcoin, and other cryptocurrencies, by attacks
using quantum computers. We find that the proof-of-work used by Bitcoin is relatively resis-
tant to substantial speedup by quantum computers in the next 10 years, mainly because spe-
cialized ASIC miners are extremely fast compared to the estimated clock speed of near-term
quantum computers. On the other hand, the elliptic curve signature scheme used by Bitcoin is
much more at risk, and could be completely broken by a quantum computer as early as 2027,
by the most optimistic estimates. We analyze an alternative proof-of-work called Momentum,
based on finding collisions in a hash function, that is even more resistant to speedup by a quan-
tum computer. We also review the available post-quantum signature schemes to see which
one would best meet the security and efficiency requirements of blockchain applications.

1. Introduction

Bitcoin is a decentralized digital currency secured by cryptography. Since its development
by Satoshi Nakamato in 2008,1 Bitcoin has proven to be a remarkably successful and secure
system and has inspired the development of hundreds of other cryptocurrencies and blockchain
technologies in a market currently worth over 100 billion USD.

The security of Bitcoin derives from several different features of its protocol. The first
is the proof-of-work that is required to write transactions to the Bitcoin digital ledger. The
work required to do this safeguards against malicious parties who possess less than 50% of the
computational power of the network from creating an alternative history of transactions. The
second is the cryptographic signature that is used to authorize transactions. Bitcoin currently
uses a signature scheme based on elliptic curves.

The coming development of quantum computers poses a serious threat to almost all of the
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cryptography currently used to secure the internet and financial transactions, and also to Bitcoin.
The basic attack vectors on Bitcoin by quantum computers are known in the Bitcoin community.2

Our contribution in this paper is to more precisely and quantitatively analyze these threats to give
reasonable estimates as to when they might be viable. We find that the proof-of-work used by
Bitcoin is relatively resistant to substantial speedup by quantum computers in the next 10 years,
mainly because specialized ASIC miners are extremely fast compared to the estimated clock
speed of near-term quantum computers. This means that transactions, once on the blockchain,
would still be relatively protected even in the presence of a quantum computer.

The elliptic curve signature scheme used by Bitcoin is well-known to be broken by Shor’s
algorithm for computing discrete logarithms.3 We analyse exactly how long it might take to
derive the secret key from a published public key on a future quantum computer. This is critical
in the context of Bitcoin as the main window for this attack is from the time a transaction is
broadcast until the transaction is processed into a block on the blockchain with several blocks
after it. By our most optimistic estimates, as early as 2027 a quantum computer could exist that
can break the elliptic curve signature scheme in less than 10 minutes, the block time used in
Bitcoin.

We also suggest some countermeasures that can be taken to secure Bitcoin against quantum
attacks. We analyse an alternative proof-of-work scheme called Momentum,4 based on finding
collisions in a hash function, and show that it admits even less of a quantum speedup than the
proof-of-work used by Bitcoin. We also review alternative signature schemes that are believed to
be quantum safe.

2. Blockchain Basics

In this section we give a basic overview of how Bitcoin works, so that we can refer to specific
parts of the protocol when we describe possible quantum attacks. We will keep this discussion at
an abstract level, as many of the principles apply equally to other cryptocurrencies with the same
basic structure as Bitcoin.

All Bitcoin transactions are stored in a public ledger called the blockchain. Individual
transactions are bundled into blocks, and all transactions in a block are considered to have
occurred at the same time. A time ordering is placed on these transactions by placing them in a
chain. Each block in the chain (except the very first, or genesis block) has a pointer to the block
before it in the form of the hash of the previous block’s header.

Blocks are added to the chain by miners. Miners can bundle unprocessed transactions into
a block and add them to the chain by doing a proof-of-work (PoW). Bitcoin, and many other
coins, use a PoW developed by Adam Back called Hashcash.5 The hashcash PoW is to find a
well-formed block header such that h(header)≤ t, where h is a cryptographically secure hash
function and header is the block header. A well-formed header contains summary information
of a block such as a hash derived from transactions in the block,6 a hash of the previous block
header, a time stamp, as well as a so-called nonce, a 32-bit register that can be freely chosen.
An illustration of a block can be found in Table 1. The parameter t is a target value that can be
changed to adjust the difficulty of the PoW. In Bitcoin, this parameter is dynamically adjusted
every 2016 blocks such that the network takes about 10 minutes on average to solve the PoW.

In Bitcoin the hash function chosen for the proof of work is two sequential applications of
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Version 0x20000012
Previous block header hash 00 . . .0dfff7669865430b. . .
Merkle Root 730d68233e25bec2. . .
Timestamp 2017-08-07 02:12:18
Difficulty 860,221,984,436.22
Nonce 941660394

Transaction 1
Transaction 2

...

Table 1. Illustration of a block. The data in the top constitutes the block header.

the SHA256 : {0,1}∗→ {0,1}256 hash function, i.e. h(·) = SHA256(SHA256(·)). As the size
of the range of h is then 2256, the expected number of hashes that need to be tried to accomplish
the hashcash proof of work with parameter t is 2256/t. Rather than t, the Bitcoin proof-of-work
is usually specified in terms of the difficulty D where D = 2224/t. This is the expected number of
hashes needed to complete the proof of work divided by 232, the number of available nonces. In
other words, the difficulty is the expected number of variations of transactions and time stamps
that need to be tried when hashing block headers, when for each fixing of the transactions and
time stamp all nonces are tried.

Miners can bundle unprocessed transactions into a block however they like, and are awarded
a number of bitcoins for succeeding in the PoW task. The “generation” transaction paying the
mining reward is also a transaction included in the block, ensuring that different miners will be
searching over disjoint block headers for a good hash pre-image.

Once a miner finds a header satisfying h(header)≤ t, they announce this to the network and
the block is added to the chain. Note that it is easy to verify that a claimed header satisfies the
PoW condition — it simply requires one evaluation of the hash function.

The purpose of the PoW is so that one party cannot unilaterally manipulate the blockchain in
order to, for example, double spend. It is possible for the blockchain to fork, but at any one time
the protocol dictates that miners should work on the fork that is currently the longest. Once a
block has k many blocks following it in the longest chain, a party who wants to create a longest
chain not including this block would have to win a PoW race starting k blocks behind. If the party
controls much less than half of the computing power of the network, this becomes very unlikely
as k grows. In Bitcoin, a transaction is usually considered safe once it has 6 blocks following it.

The first question we will look at in Section 3.1 is what advantage a quantum computer
would have in performing the hashcash PoW, and if it could unilaterally “come from behind” to
manipulate the blockchain.

The second aspect of Bitcoin that is important for us is the form that transactions take. When
Bob wants to send bitcoin to Alice, Alice first creates (an ideally fresh) private-public key pair.
The public key is hashed to create an address. This address is what Alice provides to Bob as the
destination to send the bitcoin. Bitcoin uses the hash of the public key as the address instead of
the public key not for security reasons but simply to save space.7 As we see later, this design
choice does have an impact on the quantum security.
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To send bitcoin to Alice, Bob must also point to transactions on the blockchain where bitcoin
was sent to addresses that he controls. The sum of bitcoin received to these referenced transactions
must add up to at least the amount of bitcoin Bob wishes to send to Alice. Bob proves that
he owns these addresses by stating the public key corresponding to each address and using his
private key corresponding to this address to sign the message saying he is giving these bitcoins to
Alice.

3. Quantum Attacks on Bitcoin

3.1. Attacks on the Bitcoin Proof-of-Work—In this section, we investigate the advantage a
quantum computer would have in performing the hashcash PoW used by Bitcoin. Our findings can
be summarized as follows: Using Grover search,8 a quantum computer can perform the hashcash
PoW by performing quadratically fewer hashes than is needed by a classical computer. However,
the extreme speed of current specialized ASIC hardware for performing the hashcash PoW,
coupled with much slower projected gate speeds for current quantum architectures, essentially
negates this quadratic speedup, at the current difficulty level, giving quantum computers no
advantage. Future improvements to quantum technology allowing gate speeds up to 100GHz
could allow quantum computers to solve the PoW about 100 times faster than current technology.
However, such a development is unlikely in the next decade, at which point classical hardware
may be much faster, and quantum technology might be so widespread that no single quantum
enabled agent could dominate the PoW problem.

We now go over these results in detail. Recall that the Bitcoin PoW task is to find a valid
block header such that h(header)≤ t, where h(·) = SHA256(SHA256(·)). The security of the
blockchain depends on no agent being able to solve the PoW task first with probability greater
than 50%. We will investigate the amount of classical computing power that would be needed to
match one quantum computer in performing this task.

We will work in the random oracle model,9 and in particular assume that Pr[h(header)≤ t] =
t/2256 where the probability is taken uniformly over all well-formed block headers that can be
created with transactions available in the pool at any given time (such well-formed block headers
can be found by varying the nonce, the transactions included in the block as well as the least
significant bits of the timestamp of the header). On a classical computer, the expected number of
block headers and nonces which need to be hashed in order to find one whose hash value is at
most t is D×232 where D is the hashing difficulty defined by D = 2224/t.10

For quantum computers in the random oracle model we can restrict our attention to the
generic quantum approach to solving the PoW task using Grover’s algorithm.8 By Grover’s
algorithm, searching a database of N items for a marked item can be done with O(

√
N) many

queries to the database (whereas any classical computer would require Ω(N) queries to complete
the same task).

Let N = 2256 be the size of the range of h for the following. By our assumptions, with
probability at least 0.9999 a random set of 10 ·N/t many block headers will contain at least
one element whose hash is at most t. We can fix some deterministic function g mapping
S = {0,1}dlog(10·N/t)e to distinct well-formed block headers. We also define a function f which
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determines if a block header is “good” or not

f (x) =

{
0 if h(g(x))> t

1 if h(g(x))≤ t
.

A quantum computer can compute f on a superposition of inputs, i.e. perform the mapping

∑
x∈S

αx|x〉 → ∑
x∈S

(−1) f (x)
αx|x〉.

Each application of this operation is termed an oracle call. Using Grover’s algorithm a quantum
algorithm can search through S to find a good block header by computing #O = π

4

√
10 ·N/t =

π214
√

10 ·D oracle calls. The Grover algorithm can be adapted to run with this scaling even if
the number of solutions is not known beforehand, and even if no solutions exist.11

While the number of oracle calls determines the number of hashes that need to be performed,
additional overhead will be incurred to compute each hash, to construct the appropriate block
header, and to do quantum error correction. We now analyze these factors to determine a more
realistic estimate of the running time in two ways. First, we estimate the running time based on a
well studied model for universal quantum computers with error correction.

On a classical computer, a hash function such as SHA256 uses basic boolean gate operations,
whereas on a quantum computer, these elementary boolean gates are translated into reversible
logical quantum gates which introduces some overhead. There are a total of 64 rounds of hashing
in the SHA256 protocol and each round can be done using an optimized circuit with 683 Toffoli
quantum gates.12 The Toffoli gate is a three qubit controlled-controlled not gate defined by its
action on a bit string: Toffoli|x1〉|x2〉|x3〉= |x1〉|x2〉|x3⊕x1x2〉. Most quantum error correction
codes use T gates rather than Toffoli gates as the representative time consuming gate. The T
gate is a single qubit gate defined by the action T |x〉= eixπ/4|x〉. Like the Tofolli, the T gate is
a so called non-Clifford gate which means, for most error correction codes, it is more resource
demanding to implement fault tolerantly, requiring (for example) state distillation factories. A
careful analysis of the cost to perform the SHA256 function call as well as the inversion about
the mean used in the Grover algorithm finds a total T gate count of 474168 for one oracle call.13

In that circuit decomposition, the T gates can only be parallelized by roughly a factor of three.
There is additional overhead needed by quantum computers to perform error correction. In

deciding on a good quantum error correction code there are a variety of tradeoffs to consider:
tolerance to a particular physical error model, versatility for subroutines, number of qubits
used, logical gate complexity, and the amount of classical processing of error syndromes and
feedback. Adopting the surface code, which has advantages of a relatively high fault tolerance
error threshold and local syndrome measurements, we can adapt the analysis in Suchara (et al.)
to estimate the total run time of the quantum algorithm.13 The time needed to run the Grover
algorithm and successfully mine a block is

τ = #O×#G/s = π214
√

10 ·D×#G/s,

where #G is the number of cycles needed for one oracle call, and s is the quantum computer
clock speed. Using a surface code, where the dominant time cost is in distilling magic states to
implement T gates, one finds

#G = 297784× cτ(D, pg),
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where the first factor includes the logical T gate depth for calling the SHA256 function twice as
required by Bitcoin PoW, and twice again to make the circuit reversible, as well as the inversion
about the mean. The second factor, cτ , is the overhead factor in time needed for quantum error
correction. It counts the number of clock cycles per logical T gate and is a function of difficulty
and the physical gate error rate pg. For a fixed gate error rate, the overhead factor cτ is bounded
above by the cost to invert a 256 bit hash (maximum difficulty).

Because the quantum algorithm runs the hashing in superposition, there is no direct translation
of quantum computing power into a hashing rate. However, we can define an effective hash rate,
hQC, as the expected number of calls on a classical machine divided by the expected time to find
a solution on the quantum computer, viz.

hQC ≡
N/t

τ
=

0.28× s
√

D
cτ(D, pg)

.

Because the time overhead is bounded, asymptotically the effective hashing rate improves as
the square root of the difficulty, reflecting the quadratic advantage obtainable from quantum
processors.

The Grover algorithm can be parallelized over d quantum processors. In the optimal strategy,
each processor is dedicated to search over the entire space of potential solutions, and the expected
number of oracle calls needed to find a solution is #O = 0.39× #O/

√
d .14 This implies an

expected time to find a solution is

τ‖ = 0.39× τ/
√

d,

and the effective hash rate using d quantum processors in parallel is

hQC,‖ = 2.56×hQC
√

d.

The number of logical qubits needed in the Grover algorithm is fixed at 2402, independent of the
difficulty. The number of physical qubits needed is

nQ = 2402× cnQ(D, pg),

where cnQ is the overhead in space, i.e. physical qubits, incurred due to quantum error correction,
and is also a function of difficulty and gate error rate.

In Appendix 1 we show how to calculate the overheads in time and space incurred by
error correction. The results showing the performance of a quantum computer for blockchain
attacks are given in Figure 1. To connect these results to achievable specifications, we focus on
superconducting circuits which as of now have the fastest quantum gate speeds amoung candidate
quantum technologies and offer a promising path forward to scalability. Assuming maximum
gate speeds attainable on current devices of s = 66.7MHz,15 and assuming an experimentally
challenging, but not implausible, physical gate error rate of pg = 5×10−4, and close to current
difficulty D = 1012, the overheads are cτ = 538.6 and cnQ = 1810.7, implying an effective hash
rate of hQC = 13.8GH/s using nQ = 4.4×106 physical qubits. This is more than one thousand
times slower than off the shelf ASIC devices which achieve hash rates of 14TH/s;16 the reason
being the slow quantum gate speed and delays for fault tolerant T gate construction.

Quantum technologies are poised to scale up significantly in the next decades with a quantum
version of Moore’s law likely to take over for quantum clock speeds, gate fidelities, and qubit
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pg
D

hQC (TH/s)@50GHz

(a)

pg
D

nQ

(b)

Fig. 1. Performance of a single quantum computer for blockchain attacks as a function of phys-
ical gate error rate pg, which is an internal machine specification, and mining Difficulty D,
which is set by the blockchain protocol. (a) Effective hash rate hQC for a quantum computer
operating at 50GHz clock speed which is at the optimistic limit of foreseeable clock speeds.
The hash rate increases as the square root of difficulty (note the log scale). For d quantum
computers acting in parallel the effective hash rate increases by a factor of 2.56×

√
d.(b)

Number of physical qubits nQ used by the quantum computer.
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Hash rate of total bitcoin network vs. single quantum computer

Fig. 2. This plot shows two estimates of the hashing power (in hashes per second) of the
Bitcoin network (blue striped curves) vs. a single quantum computer (red striped curves) as
a function of time for the next 25 years. We give more and less optimistic estimates and
uncertainty regions (blue and orange area). The model is described in detail in Appendices 2
and 3. Prior to 2028 (in the more optimistic estimate) there will not be any quantum computer
with sufficiently many qubits to implement the Grover algorithm. For comparison, the black
dotted line shows the hash rate of a single ASIC device today.

number. Guided by current improvements in superconducting quantum circuit technology,
forecasts for such improvements are given in Appendices 2 and 3. This allows us to estimate of
the power of a quantum computer as a function of time as shown in Figure 2. Evidently, it will
be some time before quantum computers outcompete classical machines for this task, and when
they do, a single quantum computer will not have a majority of hashing power.

Nonetheless, certain attacks become more profitable for an adversary armed with quantum
computers with even modest hashing power advantage over classical miners. One example is
a mining pool attack wherein a malicious outside party pays pool members to withhold their
valid block solutions.17 This reduces the effective mining power of the pool and increases the
relative power of the adversary. Smart contracts can be added to the blockchain to enforce the
attacker’s bribes and the pool members compliance if they agree to withhold. Remarkably, such
an attack is profitable even when the hashing power of the attacker is well below half of the entire
network. For example, an attacker with 0.1% of the total network hashing power could, with
only a small bribe, cause pool revenue to decrease by 10%. This level of quantum hashing power
could be realized by an adversary controlling 20 quantum computers running in parallel with
specifications at the minimum of the optimistic assumptions outlined in Appendix 1 where the
effective hash rate scales like hQC = 0.04× s

√
D, assuming difficulty D = 1013 and clock speed

s = 50GHz.
3.2. Attacks on Signatures—Signatures in Bitcoin are made using the Elliptic Curve Digital

Signature Algorithm based on the secp256k1 curve. The security of this system is based on

75
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2018.127



LEDGER VOL 3 (2018) 68-90

pg
10-6 5 x10-6 10-5 5x10-5 10-4 5x10-4 10-3
0

20

40

60

80

100

120

10-6 5 x10-6 10-5 5x10-5 10-4 5x10-4 10-3⌧ (mins)

(a)

10-6 5 x10-6 10-5 5x10-5 10-4 5x10-4 10-3
0

1×106

2×106

3×106

4×106

5×106
10-6 5 x10-6 10-5 5x10-5 10-4 5x10-4 10-3

pg

nQ

(b)

Fig. 3. Performance of a quantum computer operating at 10GHz clock speed for attacks on
digital signatures using the elliptic curve digital signature algorithm. (a) Time in minutes to
break the signature as a function of physical gate error rate pg. (b) Number of physical qubits
used by the quantum computer.

the hardness of the Elliptic Curve Discrete Log Problem (ECDLP). While this problem is still
believed to be hard classically, an efficient quantum algorithm to solve this problem was given by
Shor.3 This algorithm means that a sufficiently large universal quantum computer can efficiently
compute the private key associated with a given public key rendering this scheme completely
insecure. The implications for Bitcoin are the following:

(1) (Reusing addresses) To spend bitcoin from an address the public key associated with that
address must be revealed. Once the public key is revealed in the presence of a quantum
computer the address is no longer safe and thus should never be used again. While always
using fresh addresses is already the suggested practice in Bitcoin, in practice this is not
always followed. Any address that has bitcoin and for which the public key has been
revealed is completely insecure.

(2) (Processed transactions) If a transaction is made from an address which has not been
spent from before, and this transaction is placed on the blockchain with several blocks
following it, then this transaction is reasonably secure against quantum attacks. The
private key could be derived from the published public key, but as the address has already
been spent this would have to be combined with out-hashing the network to perform a
double spending attack. As we have seen in Section 3.1, even with a quantum computer a
double spending attack is unlikely once the transaction has many blocks following it.

(3) (Unprocessed transactions) After a transaction has been broadcast to the network, but
before it is placed on the blockchain it is at risk from a quantum attack. If the secret
key can be derived from the broadcast public key before the transaction is placed on the
blockchain, then an attacker could use this secret key to broadcast a new transaction from
the same address to his own address. If the attacker then ensures that this new transaction
is placed on the blockchain first, then he can effectively steal all the bitcoin behind the
original address.

We view item (3) as the most serious attack. To determine the seriousness of this attack it is
important to precisely estimate how much time it would take a quantum computer to compute the
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ECDLP, and if this could be done in a time close to the block interval. For an instance with an n
bit prime field, a recently optimized analysis shows a quantum computer can solve the problem
using 9n+2dlog2(n)e+10 logical qubits and (448log2(n)+4090)n3 Toffoli gates.18 Bitcoin
uses n = 256 bit signatures so the number of Toffoli gates is 1.28×1011, which can be slightly
parallelized to depth 1.16×1011. Each Toffoli can be realized using a small circuit of T gate
depth one acting on 7 qubits in parallel (including 4 ancilla qubits).19

Following the analysis of Sec. 3.1, we can estimate the resources needed for a quantum attack
on the digital signatures. As with block mining, the dominant time is consumed by distilling
magic states for the logical T gates. The time to solve the ECDLP on a quantum processor is

τ = 1.28×1011× cτ(pg)/s,

where the time overhead cτ now only depends on gate error rate, and s is again the clock speed.
The number of physics qubits needed is

nQ = 2334× cnQ(pg),

where the first factor is the number of logical qubits including 4 logical ancilla qubits, and cnQ is
the space overhead.

The performance of a quantum computer to attack digital signatures is given in Figure 3.
Using a surface code with a physical gate error rate of pg = 5×10−4, the overhead factors are
cτ = 291.7 and cnQ = 735.3, and the time to solve the problem at 66.6 MHz clock speed is 6.49
days using 1.7×106 physical qubits. Looking forward to performance improvements, for 10GHz
clock speed and error rate of 10−5, the signature is cracked in 30 minutes using 485550 qubits.
The latter makes the attack in item (3) quite possible and would render the current Bitcoin system
highly insecure. An estimate of the time required for a quantum computer to break the signature
scheme as a function of time is given in Figure 4, based on the model described in Appendices 2
and 3.

3.3. Future Enhancements of Quantum Attacks—We have described attacks on the Bitcoin
protocol using known quantum algorithms and error correction schemes. While some of the
estimates for quantum computing speed and scaling may appear optimistic, it is important to
keep in mind that there are several avenues for improved performance of quantum computers to
solve the aforementioned problems.

First, the assumed error correction code here is the surface code which needs significant
classical computational overhead for state distillation, error syndrome extraction, and correction.
Other codes which afford transversal Clifford and non-Clifford gates could overcome the need for
slow state distillation.20 In fact the slow down from classical processing for syndrome extraction
and correction could be removed entirely using a measurement free protocol.21 Recent analysis
of measurement free error correction using the surface code finds error thresholds only about
6 times worse than the measurement based approach.22 This could potentially dramatically
improve overall speed of error correction.

Second, reductions in logical gate counts of the quantum circuits are possible as more
efficient advanced quantum-computation techniques are being developed. For example, using
a particular large-size example problem (including oracle implementations) that was analyzed
in a previous work,23 a direct comparison of the concrete gate counts, obtained by the software
package Quipper, has been achieved between the old and the new linear-systems solving quantum
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Fig. 4. This plot shows two estimates of the time (in seconds) required for a quantum computer
to break the signature scheme (red curves) as a function of time for the next 25 years. We
give more and less optimistic estimates (red striped lines). The models are described in detail
in Appendix 3. According to this estimate, the signature scheme can be broken in less than
10 minutes (600 seconds, black dotted line) as early as 2027.

algorithms,24, 25 showing an improvement of several orders of magnitude.26 Given that the
quantum Shor and Grover algorithms have been well studied and highly optimized, one would
not expect such a dramatic improvement, nonetheless it is likely some improvement is possible.

Third, different quantum algorithms might provide relative speedups. Recent work by
Kaliski,27 presents a quantum algorithm for the Discrete Logarithm Problem: find m given
b = am, where b is a known target value and a is a known base, using queries to a so called
“magic box” subroutine which computes the most significant bit of m. By repeating queries using
judiciously chosen powers of the base, all bits of m can be calculated and the problem solved.
Problem queries can be distributed to many quantum computers to solve in parallel. While each
such query would requires a number of logical qubits and gates comparable to solving the entire
problem, there may be some overall speedup since the number of measurements at the end is
reduced and required precision of logical gates may be less meaning lower overheads for fault
tolerant implementation.

4. Countermeasures

4.1. Alternative Proofs-of-Work—As we have seen in the last section, a quantum computer
can use Grover search to perform the Bitcoin proof-of-work using quadratically fewer hashes
than are needed classically. In this section we investigate alternative proofs-of-work that might
offer less of a quantum advantage. The basic properties we want from a proof-of-work are:

(1) (Difficulty) The difficulty of the problem can be adjusted in accordance with the comput-
ing power available in the network.

(2) (Asymmetry) It is much easier to verify the proof-of-work has been successfully com-
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pleted than to perform the proof-of-work.
(3) (No quantum advantage) The proof-of-work cannot be accomplished significantly faster

with a quantum computer than with a classical computer.
The Bitcoin proof-of-work accomplishes items (1) and (2), but we would like to find an alternative
proof of work that does better on (3).

Similar considerations have been investigated by authors trying to find a proof-of-work that,
instead of (3) look for proofs-of-work that cannot be accelerated by ASICs. An approach to doing
this is by looking at memory intensive proofs of work. Several interesting candidates have been
suggested for this such as Momentum,4 based on finding collisions in a hash function, Cuckoo
Cycle,28 based on finding constant sized subgraphs in a random graph, and Equihash,29 based on
the generalized birthday problem. These are also good candidates for a more quantum resistant
proof-of-work.

These schemes all build on the hashcash-style proof-of-work and use the following template.
Let h1 : {0,1}∗→ {0,1}n be a cryptographically secure hash function and H = h1(header) be
the hash of the block header. The goal is then to find a nonce x such that

h1(H ‖ x)≤ t and P(H,x) ,

for some predicate P. The fact that the header and nonce have to satisfy the predicate P means
that the best algorithm will no longer simply iterate through nonces x in succession. Having
a proof-of-work of this form also ensures that the parameter t can still be chosen to vary the
difficulty.

In what follows, we will analyse this template for the Momentum proof-of-work, as this can
be related to known quantum lower bounds. For the momentum proof of work, let h2 : {0,1}∗→
{0,1}` be another hash function with n ≤ `. In the original Momentum proposal h1 can be
taken as SHA-256 and h2 as a memory intensive hash function, but this is less important for our
discussion. The proof-of-work is to find H,a,b such that

h1(H ‖ a ‖ b)≤ t and h2(H ‖ a) = h2(H ‖ b) and a,b≤ 2` . (1)

First let’s investigate the running time in order to solve this proof-of-work, assuming that the
hash functions h1,h2 can be evaluated in unit time. Taking a subset S⊂ {0,1}` and evaluating
h2(H ‖ a) for all a ∈ S, we expect to find about |S|2/2` many collisions. Notice that by using an
appropriate data structure, these collisions can be found in time about |S|.

One algorithm is then as follows. For each H, we evaluate h2 on a subset S and find
about |S|2/2` many pairs a,b such that h2(H ‖ a) = h2(H ‖ b). For each collision we then test
h1(H ‖ a ‖ b) ≤ t. In expectation, we will have to perform this second test 2n/t many times.
Thus the number of H’s we will have to try is about m = max{1, 2n+`

t|S|2 }, since we have to try at
least one H. As for each H we spend time |S|, the total running time is m|S|. We see that it is the
smallest when |S|=

√
2n+`/t, that is when m = 1, and we just try one H. This optimal running

time is then T =
√

2n+`/t, and to achieve it we have to use a memory of equal size to the running
time, which might be prohibitive. For some smaller memory |S|<

√
2n+`/t the running time

will be 2n+`+1

t|S| .
Now let us look at the running time on a quantum computer. On a quantum computer we

can do the following. Call H good if there exists a,b ∈ S such that h1(H ‖ a ‖ b)≤ t and h2(H ‖
a) = h2(H ‖ b). Testing if an H is good requires finding a collision, and therefore necessitates at
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least |S|2/3 time by the quantum query lower bound of Aaronson and Shi.30 Note that this lower
bound is tight as finding such a collision can also be done in roughly |S|2/3 time using Ambainis’s
element distinctness algorithm.31 We have argued above that a set of size m = max{1, 2n+`

t|S| } is
needed to find at least one good H. By the optimality of Grover search we know that we have
to perform at least

√
m many tests to find a good H.32 As testing if an H is good requires time

|S|2/3, the total running time is at least
√

m|S|2/3. As the classical running time is m|S|, we see
that unlike for the current proof of work in Bitcoin, with this proposal a quantum computer
would not be able to achieve a quadratic advantage as soon as S is more than constant size. In
particular, since

√
m|S|2/3 is minimized also when S =

√
2n+`/t, the running time of even the

fastest quantum algorithm is at least T 2/3, which is substantially larger than T 1/2.
4.2. Review of Post-Quantum Signature Schemes—Many presumably quantum-safe public-

key signature schemes have been proposed in the literature. Some examples of these are hash-
based signature schemes (LMS,33 XMSS,34 SPHINCS,35 and NSW 36), code-based schemes
(CFS 37 and QUARTZ 38), schemes based on multivariate polynomials (RAINBOW 39), and
lattice-based schemes (GPV,40 LYU,41 BLISS,42 ring-TESLA,43 DILITHIUM,44 and NTRU 45).
Each of these cryptosystems have varying degree of efficiency. For a comparison in terms of
signature size and key size, see Table 2.

In the blockchain context the most important parameters of a signature scheme are the
signature and public key lengths, as these must be stored in some capacity to fully verify
transactions, and the time to verify the signature. Looking at Table 2, with respect to the sum of
signature and public key lengths, the only reasonable options are hash and lattice based schemes.

Hash based schemes like XMSS have the advantage of having provable security, at least
assuming the chosen hash function behaves like a random oracle. The generic quantum attack
against these schemes is to use Grover’s algorithm which means that their quantum security
level is half of the classical security level. In contrast, the best known quantum attack against
DILITHIUM at 138 bit classical security level requires time 2125. Thus at the same level of
quantum security, lattice based schemes have some advantage in signature plus public key length.

Although the lattice based scheme BLISS has the shortest sum of signature and public key
lengths of all the schemes in Table 2, there are some reasons not to choose BLISS in practice.
The security of BLISS relies on hardness of the NTRU problem and the assumption that solving
this problem is equivalent to finding a short vector in a so-called NTRU lattice. It has been shown
recently that this assumption might be too optimistic, at least for large parameters.46 Moreover,
there is a history of attacks on prior NTRU-based signature schemes.47, 48 Perhaps most fatally,
BLISS is difficult to implement in a secure way as it is very susceptible to side channel attacks.
The production grade strongSwan implementation of BLISS has been attacked in this way by
Pessl (et al.),49 who showed that the signing key could be recovered after observing about 6000
signature generations.
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type name classical quantum PK signature total
security security length length length

(bits) (bits) (kb) (kb) (kb)

ECDSA 127 0 0.3 0.5 0.8

I.1 GPV50 100 300 240 540
I.2 LYU50 100 65 103 168
I.3 BLISS42 128 7 5 12
I.4 FALCON-512*51 114 103 7.2 4.9 12.1
I.5 ring-TESLA43 128 26.6 11.9 38.5
I.6 qTESLA-128*52 128 23.8 21.7 45.4
I.7 DILITHIUM*44 138 125 11.8 21.6 33.4
II.1 RAINBOW53 160 305 0.2 305.2
III.1 LMS54 256 128 0.8 22.6 23.4
III.2 XMSS34 196 93 13.6 22.3 35.9
III.3 SPHINCS35 256 128 8.4 328 336.4
III.4 NSW36 128 0.3 36 36.3
IV.1 CFS37 83 9216 0.1 9216.1
IV.2 QUARTZ38 80 568 0.1 568.1

Table 2. Comparison of the public key (PK) and signature lengths of post-quantum signature
schemes in kilobits (kb). As a reference, the parameters for ECDSA are also given. The
security level given is against classical and quantum (where available) attacks. Type I are
lattice based, type II based on multivariate polynomials, type III hashing based, and type IV
code based. An asterisk indicates schemes that have been submitted to the NIST call on
post-quantum cryptography.
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Appendix A: Estimating Error Correction Resource Overheads for Quantum
Attacks

Here we describe how the overhead factors for quantum error correction are calculated in order
to obtain resource costs for quantum attacks on blockchains and digital signatures. The method
follows the analysis given in Fowler (et al.)55 and Matthew (et al.).56 We first determine nT

and nC, the number of T gates and Clifford gates respectively needed in the algorithm. The
pseudo-code to compute the overhead is given in Table 3. For the blockchain attack on nL = 2402
qubits, these values are

nT = 297784×π214
√

10 ·D, nC = 29.4×nT .

For the Digital Signature attack on nL = 2334 qubits,57 the values are

nT = 1.28×1011, nC = 20×nT .

If we look some years into the future we can speculate as to plausible improvements in
quantum computer technology. If we assume a quantum error correction code that supports
transversal Clifford and non-Clifford gates so there is no distillation slow down and that it is
done in a measurement free manner so that no classical error syndrome processing is necessary,
then the number of cycles needed for one oracle call is determined solely by the circuit depth
which is 2142094. This is based on an overall circuit depth calculated as follows. The oracle
invokes two calls to the SHA256 hash function, and this is done twice, once to compute it and
again to uncompute it. Each hash has a reversible circuit depth of 528768. Similarly, there are
two multi-controlled phase gates used, one for inversion about the mean and one for the function
call, each having a circuit depth 13511, for a total depth 4× 528768+ 2× 13511 = 2142094
(these numbers are from Suchara (emphet al.) but could be further optimized13). Then accepting
potential overhead in space and physical qubit number, but assuming no time penalty for error
correction or non Clifford gate distillation, this implies an improved effective hashing rate of

hQC = 0.04× s
√

D.

which is substantially faster. For superconducting circuits, ultrafast geometric phase gates are
possible at ∼ 50 GHz, essentially limited by the microwave resonator frequency.58 Using the
above very optimistic assumptions, at difficulty D = 1012 the effective hash rate would be
hQC = 2.0×103TH/s.
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function CALCULATEFACTORYRESOURCES(pg, nT ) . iterates layers of error correction in
factory

ptol← 1
nT

. (uncorrected) error tolerance
i← 0
while ptol < 10pg do

i← i+1 . add layer
di←min

{
d ∈ N : 192d · (100pg)

d+1
2 ≥ ptol

2

}
. code distance in this layer

ptol← ( ptol
70 )

1
3 . increased error tolerance

end while
layers← i
τ ← nT ·10∑

layers
i=1 di . total clock cycles (only counts T gates)

Qfactory← 50(dlayers)
2 ·15layers−1 . total physical qubits for factory

return (τ,Qfactory)

end function

function CALCULATECIRCUITRESOURCES(pg, nC, nL)

dC←min
{

d ∈ N : (80pg)
d+1

2 ≥ 1
nC

}
. code distance for circuit (single layer)

return Qcircuit← 3.125nLdC . total physical qubits for circuit
end function

Table 3. Algorithms to compute space and time resources for quantum attacks. The inputs are
pg, the physical gate error rate; nC, the total number of Clifford gates in the logical circuit;
nT , the total number of T gates in the logical circuit; and nL, the number of logical qubits.
The outputs are τ , the time cost in number of clock cycles; and nQ = Qcircuit +Qfactory, the
number of physical qubits used for the computation including state distillation.
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Fig. 5. Prediction of the hash rate of the Bitcoin network (in number of hashes per second)
and the hashing difficulty as a function of time.

Appendix B: Modeling the Development of Bitcoin Network Difficulty

The total number of hashes per second in the Bitcoin network are taken from blockchain.info.
The data points in Figure 5a are the hash rates for the first of January (2012–2015) and first of
January and July (2016–2017). The two dotted curves correspond to optimistic and less optimistic
assumptions for the extrapolations. The optimistic extrapolation assumes that the present growth
continues exponentially for five years and then saturates into a linear growth as the market gets
saturated with fully optimized ASIC Bitcoin miners. The less optimistic assumption assume
linear growth at the present rate.

From the extrapolation of the Bitcoin network hashrate we can determine the difficulty as a
function of time. The expected number of hashes required to find a block in 10 minutes (600
seconds) is given by rate(t) ·600, where rate(t) is the total hash rate displayed in Figure 5a. Thus
the Bitcoin hashing difficulty is calculated as D(t) = rate(t) · 600 · 2−32 for the two scenarios
discussed above. In Figure 5b we compare this with values from blockchain.info for the first of
January of 2015–2017.

Appendix C: Modeling the Development of Quantum Computers

There are several aspects of the development of quantum technologies that we must model. Since
only few data points are available at this early stage of the development there is necessarily a lot of
uncertainty in our estimates. We therefore give two different estimates, one that is optimistic about
the pace of the development and another one that is considerably more pessimistic. Nonetheless,
these predictions should be considered as a very rough estimate and might need to be adapted in
the future.

First, we need to make an assumption on the number of qubits available at any point of
time. As we focus only on solid state superconducting implementations there are only a few data
points available. We assume that the number of available qubits will grow exponentially in time
in the near future. The optimistic assumption is that the number will double every 10 months
whereas the less optimistic assumption assumes the number doubles every 20 months. These two
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Fig. 6. Prediction of the number of qubits, the quantum gate frequency (in gate operations
per second) and the quantum gate infidelity as a function of time. The fourth plot models a
reduction of the overhead due to theoretical advances.

extrapolations are plotted in Figure 6a. The data points are taken from the following table:

number of qubits year reference

2 2013 Córcoles, A. D. (et al.) 59

5 2014 Barends (et al.) 60

3 2014 Chow (et al.) 61

5 2016 IBM (2016) 62

16 2017 IBM (2017) 63

20 2017 Reynolds 64

49 2018 Reynolds 64

We predict that the quantum gate frequency grows exponentially for the next years. This
assumes that the classical control circuits will be sufficiently fast to control quantum gates at this
frequencies. After a couple of years the growth slows down considerably because faster classical
control circuits are necessary to further accelerate the quantum gates. We cap the quantum gate
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frequency at 50 GHz (for the optimistic case) or 5 GHz (for the less optimistic case), respectively,
mostly because we expect that classical control circuits will not be able to control the quantum
gates at higher frequencies. (See, e.g., Herr (et al.) for progress in this direction.65) This is shown
in Figure 6b. The data points are taken from the following table:

gate time year reference

420ns 2013 Córcoles, A. D. (et al.) 59

433ns 2015 Córcoles, A. D. (et al.) 66

160ns 2016 Sheldon (et al.) 67

42ns 2017 Deng (et al.) 68

25ns 2018 Google, projected for end of 2017

The predicted development of the gate infidelity is shown in Figure 6c. We assume that the gate
infidelity will continue to drop exponentially but that this development will stall at an infidelity
of 5 ·10−6 (optimistic case) or 5 ·10−5 (less optimistic case). For the optimistic case we expect
that the gate infidelity will continue to follow DeVincenzo’s law which predicts a reduction of
the infidelity by a factor of 2 per year. The data points are taken from the following table:

gate fidelity year reference

0.9347 2013 Córcoles, A. D. (et al.) 59

0.96 2014 Chow (et al.) 61

0.97 2015 Córcoles, A. D. (et al.) 66

0.99 2016 Sheldon (et al.) 67

0.995 2017 Reynolds 64

0.997 2018 Reynolds 64

Finally, we assume that the number of qubits and time steps required by any algorithm will be
reduced over time for two reasons. First, the gate fidelity will increase over time and thus allow
for more efficient fault-tolerant schemes to be used. Second, theoretical advances will allow to
decrease the number of qubits and gates required to implement the algorithm and fault-tolerant
schemes. We expect that this factor will be overhead(t) = β t−2017 where β ∈ {0.75,0.85} for
optimistic and less optimistic assumptions, respectively.

90
SSN 2379-5980 (online)

DOI 10.5195/LEDGER.2018.127


