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RESEARCH ARTICLE  

Bitcoin Returns and the Frequency of Daily 

Abnormal Returns 

Guglielmo Maria Caporale,* Alex Plastun,† Viktor Oliinyk‡  

Abstract. This paper investigates the relationship between Bitcoin returns and the frequency 

of daily abnormal returns over the period from June 2013 to February 2020 using a number 

of regression techniques and model specifications including standard OLS, weighted least 

squares (WLS), ARMA and ARMAX models, quantile regressions, Logit and Probit 

regressions, piecewise linear regressions, and non-linear regressions. Both the in-sample and 

out-of-sample performance of the various models are compared by means of appropriate 

selection criteria and statistical tests. These suggest that, on the whole, the piecewise linear 

models are the best, but in terms of forecasting accuracy they are outperformed by a model 

that combines the top five to produce “consensus” forecasts. The finding that there exist price 

patterns that can be exploited to predict future price movements and design profitable trading 

strategies is of interest both to academics (since it represents evidence against the EMH) and 

to practitioners (who can use this information for their investment decisions).  

    

1. Introduction  

According to the Efficient Markets Hypothesis (EMH), which remains the dominant paradigm 

in financial economics, asset prices should follow a random walk, and therefore it should not be 

possible to design trading strategies that exploit predictable patterns to generate abnormal 

profits.1 However, there is a large body of empirical evidence indicating that there exist various 

market anomalies resulting in identifiable price patterns such as contrarian and momentum 

effects; these include calendar anomalies, price over- and under-reactions, other types of 

anomalies associated with trading volumes, and so on. In the case of the newly emerged 

cryptocurrency markets, various studies have been carried out which have provided mixed 

evidence on price predictability.2 

The current paper contributes to this literature by investigating the relationship between 

Bitcoin returns and the frequency of daily abnormal returns over the period from June 2013 to 

February 2020. It extends previous studies by Angelovska and Caporale (et al.) by considering 

a much wider range of econometric models and approaches over a longer sample, assessing the 

role of an additional regressor (namely the difference between the frequency of positive and 

negative abnormal returns), and evaluating the in-sample as well as the out-of-sample 
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performance of the rival models.3, 4 These include standard OLS, weighted least squares (WLS), 

ARMA and ARMAX models, quantile regressions, Logit and Probit regressions, piecewise 

linear regressions, and non-linear regressions. 

The remainder of the paper is organised as follows. Section 2 contains a brief review of the 

relevant literature. Section 3 describes the methodology. Section 4 discusses the empirical 

results. Section 5 provides some concluding remarks. 

2. Literature Review 

Cryptocurrencies have established themselves in recent years both as an alternative to fiat 

money and as a tradable asset used for risk-hedging purposes. Various papers have analysed the 

properties of these newly created markets. For instance, Bartos (2015) and Urquhart (2016) 

analysed their efficiency; 5 , 6  Dwyer (2014) and Carrick (2016) examined volatility in the 

cryptocurrency market;7, 8  Corbet et al. (2018) and Cheung et al. (2015) focused on price 

bubbles; 9 , 10 other market anomalies were explored by Baur et al. (2019), Kurihara and 

Fukushima (2017), and Caporale and Plastun (2019);11, 12, 13 Bariviera et al. (2017) and Caporale 

et al. (2018) investigated their persistence and long-memory properties;14, 15 and Bouri et al. 

(2019) examined price predictability.16  

Of particular interest is the issue of whether or not abnormal returns generate stable patterns 

in price behaviour. This has been a popular topic for investigation since De Bondt and Thaler 

(1985) developed the overreaction hypothesis.17 The evidence is mixed: some papers find price 

reversals after abnormal price changes,18, 19 whilst others detect momentum effects.20, 21 In the 

specific case of the cryptocurrency markets, Chevapatrakul and Mascia (2019) estimated a 

quantile autoregressive model and concluded that days with extremely negative returns are 

likely to be followed by periods characterised by weekly positive returns as Bitcoin prices 

continue to rise. 22  Corbet et al. (2019) analysed various technical trading rules in the 

cryptocurrency market and found significant support for the moving average strategies and also 

evidence that buy signals generate higher returns than sell signals.23 Katsiampa (2019) showed 

that the volatility of cryptocurrencies responds to news.24  

Caporale and Plastun (2019) used a variety of statistical tests and trading simulation 

approaches and found that after one-day abnormal returns price changes in the same direction 

are bigger than after “normal” days (the so-called momentum effect).4 Caporale et al. (2019) 

provided evidence on the role played by the frequency of overreactions.4  Qing et al. (2019) 

applied DFA and MF-DFA methods and found momentum effects in Bitcoin and Ethereum 

prices after abnormal returns.25  Momentum effects were also detected by Panagiotis et al. 

(2019) and Yukun and Tsyvinski (2019).26, 27 The present study extends the previous one by 

Caporale et al. (2019) by using different methods (quantile regressions, Logit and Probit 

regressions, piecewise linear regressions, and non-linear regressions are used in this paper 

instead of the VAR and ARIMA models estimated by Caporale et al., 2019), examining a longer 

sample (up to 2020), including different variables (the difference between the frequency of 

positive and negative abnormal returns parameter introduced in this paper), and evaluating both 

the in-sample and out-of-sample performance of the estimated models (using various criteria 

such as AIC, BIC, MAE, Theil’s statistic, etc.).4  
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3. Methodology 

The selected sample includes daily and monthly Bitcoin data over the period June 2013-

February 2020. The data source is CoinMarketCap.28 For forecasting purposes, two subsamples 

are created, namely 1 June 2013-30 December 2018 and 1 January 2019-28 February 2020 at 

the daily frequency, and June 2013-December 2018 and January 2019-February 2020 at the 

monthly frequency; various models are estimated over the first subsample, forecasts are then 

generated in each case for the second subsample using the estimated parameters, and their 

accuracy is evaluated by means of various statistical criteria. 

As a first step, abnormal returns are computed using the daily series. The dynamic trigger 

approach is based on relative values, specifically abnormal returns are defined on the basis of 

the number of standard deviations to be added to average returns.29 By contrast, the static 

approach requires setting a threshold; for example, Bremer and Sweeney (1991) use a 10% price 

change as a criterion for abnormal returns.18 Caporale and Plastun (2019) compared the 

suitability of these methods in the case of cryptocurrency markets and concluded that the latter 

is preferable.13  

An additional argument in favour of the static approach is the presence of fat tails in the 

distribution of Bitcoin prices (see Appendix A, Figure A.1) which means that a dynamic trigger 

approach, which is based on a standard normal distribution, might provide misleading results. 

This is confirmed by Caporale and Plastun (2019) who showed that the correlation between the 

frequency of abnormal returns (based on the two aforementioned methods for abnormal returns 

detection in turn) and the VIX index dynamics is much higher when using the static approach, 

which is crucial for the purposes of our analysis (i.e. price prediction);30  specifically, the 

dynamic trigger approach produces a correlation coefficient of 0.12 whilst the static one yields 

a coefficient equal to 0.81. Therefore, the static approach will be applied here. 

Returns are defined as: 

 

𝑅𝑡 = ln(𝑃𝑡) − ln(𝑃𝑡−1) (1) 

 

where 𝑅𝑡 stands for returns, and 𝑃𝑡 and 𝑃𝑡−1 are the close prices of the current and previous 

day.  

 

To analyse their frequency, distribution histograms are created. Values 10% above or below 

those of the population are plotted. Thresholds are then obtained for both positive and negative 

abnormal returns, and periods can be identified when returns were above or equal to the 

threshold. Such a procedure generates a data set for daily abnormal returns. We then calculate 

their frequency, namely the cumulative number of positive / negative abnormal returns detected 

during a month (which is a time-varying parameter changing on a daily basis) and use the end-

of-the-month values for the following regression analysis.   

Next the data set for the frequency of abnormal returns is divided into three subsets 

including, respectively, the frequency of negative and positive abnormal returns, and their 

difference, known as delta. The relationship between the frequency of one-day abnormal returns 

and Bitcoin returns is investigated by using a number of regression techniques and model 

specifications including standard OLS, weighted least squares (WLS), ARIMA and ARMAX 
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models, quantile regressions, Logit and Probit regressions, piecewise linear regressions, and 

non-linear regressions. 

The specification of the standard OLS regression is the following (2):  

 

𝑌𝑡 = 𝑎0 + 𝑎1𝐹𝑡
+ + 𝑎2𝐹𝑡

− + 𝜀𝑡 (2) 

 

where 𝑌𝑡 – Bitcoin log returns in period (month) t; 

a0 – Bitcoin mean log return; 

𝑎1 (𝑎2) – coefficients on the frequency of positive and negative one-day abnormal price, 

respectively; 

Ft
+ (𝐹𝑡

−) – the frequency of positive (negative) one-day abnormal price days during period 

t; 

𝜀𝑡 – random error term at time t. 

  

An OLS regression including the single parameter 𝐷𝑒𝑙𝑡𝑎(𝐷𝑒𝑙𝑡𝑎 = 𝐹+ − 𝐹−) instead of Ft
+ 

(𝐹𝑡
−) is also run:  

 

𝑌𝑡 = 𝑎0 + 𝑎1𝐷𝑒𝑙𝑡𝑎𝑡 + 𝜀𝑡 (3) 

 

The size, sign, and statistical significance of the estimated coefficients provide information 

about the possible effects of the frequency of daily abnormal returns on Bitcoin log returns. The 

weighted least squares regressions are similar, but instead of treating all observations equally 

they are weighted to increase the accuracy of the estimates. 

To obtain further evidence an ARMA(p,q) model is also estimated (4): 

 

𝑌𝑡 = 𝑎0 + ∑ 𝛹𝑡−𝑖

𝑝

𝑖=1

𝑌𝑡−1 + ∑ 𝜃𝑡−𝑖𝜀𝑡−𝑖

𝑞

𝑖=0

 (4) 

 

where  𝑌𝑡 – Bitcoin log returns in month t; 

𝑎0 – constant; 

𝛹𝑡−𝑖 ; 𝜃𝑡−𝑖 – coefficients, the lagged log returns and random error terms respectively; 

εt – random error term at time t; 

 

This is a special case of an ARIMA(p,d,q) specification with d=0, which is appropriate in 

our case since all series are stationary, as indicated by a variety of unity root tests which imply 

that differencing is not required (the test results are not reported for reasons of space but are 

available from the authors upon request).  

Next, in order to improve the basic ARMA(p,q) specification, exogenous variables are 

added, namely the frequency of negative and positive one-day abnormal returns in (5) and Delta 

in (6), to obtain the following ARMAX(p,q,2) and ARMAX(p,q,1) models:  
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𝑌𝑡 = 𝑎0 + ∑ 𝛹𝑡−𝑖

𝑝

𝑖=1

𝑌𝑡−1 + ∑ 𝜃𝑡−𝑖𝜀𝑡−𝑖

𝑞

𝑖=0

+ 𝑎1𝐹𝑡
+ + 𝑎2𝐹𝑡

− (5) 

  

𝑌𝑡 = 𝑎0 + ∑ 𝛹𝑡−𝑖

𝑝

𝑖=1

𝑌𝑡−1 + ∑ 𝜃𝑡−𝑖𝜀𝑡−𝑖

𝑞

𝑖=0

+ 𝑎1𝐷𝑒𝑙𝑡𝑎𝑡 (6) 

 

A non-parametric method not requiring normality is also used; specifically, quantile 

regressions are run to estimate the conditional median instead of the conditional mean. More 

precisely, the quantile regression model for the 𝜏-th quantile is specified as follows (7-8):   
 

𝑌𝑡 = 𝑎0(𝜏) + 𝑎1(𝜏)𝐹𝑡
+ + 𝑎2(𝜏)𝐹𝑡

− + 𝜀𝑡(𝜏) (7) 

𝑌𝑡 = 𝑎0(𝜏) + 𝑎1(𝜏)𝐷𝑒𝑙𝑡𝑎𝑡 + 𝜀𝑡(𝜏) (8) 

 

where 𝜏 – the 𝜏-th quantile and 𝜏 ∈ (0,1); 
 

Next, Probit and Logit regression models are estimated. These are specific cases of binary 

choice models that provide estimates of the probability that the dependent variable will take the 

value 1. In a Logit regression, it is assumed that 𝑃{𝑦 = 1|𝑥} = 𝑓(𝑧) , where 𝑓(𝑧) =
1

1+𝑒𝑥𝑝(−𝑧)
 is 

the logistic function, and the parameter z is obtained from the regression (9-10): 

 

𝑧𝑡 = 𝑎0 + 𝑎1𝐹𝑡
+ + 𝑎2𝐹𝑡

− + 𝜀𝑡 (9) 

 

𝑧𝑡 = 𝑎0 + 𝑎1𝐷𝑒𝑙𝑡𝑎𝑡 + 𝜀𝑡 (10) 

 

where 𝑧𝑡 is a binary variable equal to 1 if the return in month t increased compared to day t-

1, and 0 otherwise. 
 

To allow for the possibility that the linear relationship between the dependent variable and 

the independent ones changes between subsamples a piecewise linear regression is then run to 

obtain estimates of the coefficients of interest before and after a given breakpoint, specifically: 
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𝑌 = {
𝑎0 + 𝑎1𝐹+ + 𝑎2𝐹− + 𝜀1, 𝑌 ≤ 𝐶1

𝑏0 + 𝑏1𝐹+ + 𝑏2𝐹− + 𝜀2, 𝑌 > 𝐶1
} (11) 

 

𝑌 = {
𝑎0 + 𝑎1𝐷𝑒𝑙𝑡𝑎 + 𝜀1, 𝐷𝑒𝑙𝑡𝑎 ≤ 𝐶2

𝑎0 + 𝑎1𝐷𝑒𝑙𝑡𝑎 + 𝜀2, 𝐷𝑒𝑙𝑡𝑎 > 𝐶2
} (12) 

 

where С1 and С2  are the breakpoints.  
 

Possible non-linearities are also considered by estimating a non-linear regression model 

(NLS) such as: 

𝑌 = 𝑓(𝑥𝑖)(𝑖 = 1, 𝑛̅̅ ̅̅ ̅) (13) 

where Y – dependent variable; 

𝑥𝑖 – regressors. 

 
Specifically, we run the following regression: 

𝑌 = 𝑎0 + 𝑏(𝐹+)𝑝 + 𝑐(𝐹−)𝑞  + 𝜀 (14) 

where 𝑎0, b, c, p, q are the model parameters. 
 

Information criteria, namely AIC and BIC, 31 , 32  are used to select the best model 

specification for Bitcoin log returns. To compare the forecasting performance of different 

models, various measures such as the Mean Absolute Error (MAE) and Theil’s statistic are 

computed instead. 

4. Empirical Results 

As a first step, thresholds are calculated by analysing the frequency distribution of log returns 

to detect abnormal returns (see Appendix A, Table A.1 and Figure A.1). As can be seen, two 

symmetric fat tails are present in the distribution for log returns: -0.04 for negative returns and 

0.05 for positive ones; these are then used as the thresholds to detect negative and positive 

abnormal returns respectively. 

Next we carry out correlation analysis for negative and positive abnormal returns and 

Bitcoin log returns as in Caporale et al. (2019).4 Specifically, we compute the correlation 

between Delta and Bitcoin log returns, which is equal to 0.87, and to make sure that there is no 

need to shift the data we calculate the cross-correlations at the time intervals t and 𝑡 + 𝑖, where 

𝐼 = {−10, . . . , 10}. Appendix D, Figure D.1 shows them over the whole sample period for 
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different leads and lags. The highest coefficient corresponds to lag length zero, which means 

that there is no need to shift the data. 

The OLS and WLS regression results are reported in Appendix E, Table E.1. Models 1 and 

2 are the standard OLS regressions given by (2) and (3), whilst models 1.1 and 2.1 are the WLS 

ones, where the weights are the inverse of the standard error for each observation used.  

As can be seen the two sets of estimates are very similar. The selected specification, on the 

basis of the R-squared for the whole model, the p-values for the individual estimated coefficients 

as well as AIC and BIC criteria, is the following: 

Bitcoin log returni = 0.0650 + 0.0993 × Fi
+ − 0.0904 × Fi

− (15) 

which implies a significant positive (negative) relationship between Bitcoin log returns and the 

frequency of positive (negative) abnormal returns. Any difference between the actual and 

estimated values suggests that Bitcoin is over- or under-valued, and therefore that it should be 

sold or bought till the observed difference disappears, at which stage positions should be closed.  

The estimates from the selected ARMA(p,q) models on the basis of the AIC and BIC 

information criteria, namely ARMA(2,2) and ARMA(3,3), are presented in Table F.1. As can 

be seen, although most coefficients are significant, the explanatory power of these models is 

rather low.   

To establish whether it can be improved by taking into account information about the 

frequency of abnormal returns, ARMAX models (4) are estimated. First 𝐹𝑡
+ (the frequency of 

positive abnormal returns) and 𝐹𝑡
− (the frequency of negative abnormal returns) are added as 

regressors. The estimated parameters are reported in Appendix G, Table G.1. Model 6 and 7 

correspond respectively to Model 3 and 4 with the frequency of negative and positive abnormal 

returns as additional regressors. They outperform Model 5, namely the best ARMAX 

specification with p=1. Table G.2 reports instead the estimates from the ARMAX models with 

Delta as a regressor. 

As can be seen all coefficients in Tables G.1 and G.2 are statistically significant. The best 

model on the basis of the AIC and BIC criteria is the one with Delta as a regressor. The R2 

indicates that the ARMAX (3,3,1) is the most adequate model (Model 10).  

Appendix H, Tables H.1, H.2, and H.3 report the estimates from the quantile regression 

models with quantiles equal to 0.4, 0.5, and 0.6 respectively, where the 0.5 quantile corresponds 

to the regression using the median. 

In Models 11, 13, and 15 the regressors are the frequency of negative and positive daily 

abnormal returns, whilst in Models 12, 14, and 16, Delta is the independent variable. In the case 

of the quantile regression with Q=0.5 Model 13 is the most adequate according to AIC. 

The Logit and Probit regression results are presented in Appendix I, Table I.1. As a selection 

criterion, the percentage of correctly predicted cases is used; this suggests that the best 

specification is Model 19 which includes the frequency of negative and positive daily abnormal 

returns. 

Appendix I, Table I.2 shows the piecewise linear regression results. Model 2 includes the 

frequency of negative and positive daily abnormal returns and 𝐶1 = 0 is used as a breakpoint: 

for 𝐶1 > 0  Bitcoin returns are positive, otherwise (𝐶1 < 0)  they are negative. Model 22 
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includes instead the Delta parameter with 𝐶2 = 0 as the breakpoint. Both R2 and AIC imply that 

Model 21 should be preferred.  

Non-linear models of two types are estimated next: non-linear in the regressors (but linear 

in the parameters) and in the parameters respectively. In the first case, the model can be 

transformed into a linear one by replacing the variables, and then the parameters can be 

estimated using OLS. In the second case, iterative procedures have to be used instead.  

The first type can be formulated as follows (16): 

 

𝑌 = 𝑎0 + ∑ 𝑎𝑖𝑥𝑖 + 𝜀

𝑛

𝑖−1

 (16) 

 

where  𝑌𝑡 – Bitcoin log returns; 

𝑎0 – constant; 

𝑎𝑖– coefficients on the i-th regressors; 

𝑥𝑖– regressors; 

𝜀 – random error.  
 

The modified variables (selected after some experimentation) are the following:  

𝑥1 = 𝐷𝑒𝑙𝑡𝑎; 𝑥2 = 𝐹+ × 𝐷𝑒𝑙𝑡𝑎; 𝑥3 = tan(𝐹+) × (𝐹+ + 𝐹−); 𝑥4 = sin(𝐹−) × (𝐹+)2; 

𝑥5 =  𝐹− × (𝐹+ + 𝐹−); 𝑥6 = 𝐷𝑒𝑙𝑡𝑎 × 𝐹− × (𝐹+ + 𝐹−) 

Appendix J, Table J.1 reports the corresponding parameter estimates. As can be seen both 

models 23 and 24 have statistically significant coefficients, but according to R2 and AIC Model 

24 should be preferred.  

The second type of non-linear model incorporates a new variable, namely 𝑥6 = 𝑥1𝑥5, and is 

specified as follows:    

𝑌 = 𝑎0 + 𝑏(𝐹+)𝑝 + 𝑐(𝐹−)𝑞 + ∑ 𝑎𝑖𝑥𝑖 + 𝜀

𝑛

𝑖=1

 (17) 

The corresponding estimates are shown in Appendix J, Table J.2. All coefficients are 

statistically significant. Model 27 is the most data congruent: 

 

𝑌 = 0.0618 + 0.0418 × (𝐹+)1.4688 − 0.0472 × (𝐹−)1.4018 + 0.0031
× tan(𝐹+)
× tan(𝐹+ + 𝐹−) − 0.0036
× sin(𝐹+) × (𝐹−)2 − 0.0006 × 𝐷𝑒𝑙𝑡𝑎 × 𝐹− × (𝐹+ + 𝐹−) 

(18) 

 

Table 1 reports the ranking of the top five models (of the 29 considered) according to the 

AIC criterion. As can be seen the non-linear and piecewise linear regressions appear to be the 

most data congruent. 
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Table 1: Ranking of the models based on their in-sample performance (June 2013-December 2018) 

 

Rank Model # AIC R2 Standard Error 

1 24 -98.7446 0.8783 0.1109 

2 27 -96.4904 0.8814 0.1113 

3 26 -94.9453 0.7919 0.1126 

4 21 -94.6726 0.8707 0.1144 

5 22 -71.8255 0.8012 0.1385 
 

This table presents a ranking of the models based on their in-sample performance. The first column reports 

the rank, the second column shows the model number, the third reports the AIC values, the fourth the R2 

values and the fifth the standard errors. 

 

Next, we use the estimated models to generate forecasts over the period January 2019-

February 2020; both predicted and actual values are reported in Appendix B, Table B.1. 

Appendix C, Table C.1 presents the following measures of their forecasting accuracy: the Root 

Mean Square Error (RMSE), the Mean Absolute Error (MAE), the Mean Percentage Error 

(MPE), the Mean Absolute Percentage Error (MAPE), and Theil’s U. Table 2 ranks the rival 

models in terms of their forecasting performance using the Mean Absolute Error (MAE) and 

Theil’s U criteria.  

 
Table 2: Ranking of the models on the basis of the MAE and Theil’s U criteria 

 

Rank Model # MAE Rank Model # Theil’s U 

1 21 0.0796 1 21 0.5485 

2 22 0.0889 2 22 0.6600 

3 23 0.0949 3 15 0.6639 

4 25 0.0958 4 13 0.6675 

5 2.1 0.0997 5 2.1 0.6767 

 
This table presents ranking of the models based on their out-of-sample performance. The first and the 

fourth column report the corresponding rank, the second and the fourth column show the model 

number, the third and the sixth the MAE and Theil’s U values. 

 

It can be seen that Models 21 and 22 (piecewise linear regressions) are still in the top five 

specifications, and therefore the overall evidence based on both in-sample and out-of-sample 

performance suggests that they are the best models for Bitcoin returns.  

Finally, we evaluate the accuracy of the “consensus” forecasts produced by a model that 

combines the top five selected above and therefore is specified as follows: 
 

𝑌 = 0.0754 + 7.2578𝑀𝑜𝑑𝑒𝑙2.1 − 5.9761𝑀𝑜𝑑𝑒𝑙14 + 1.6021𝑀𝑜𝑑𝑒𝑙22
− 10.3993𝑀𝑜𝑑𝑒𝑙24 + 8.6068𝑀𝑜𝑑𝑒𝑙26 

(19) 

𝑅2 = 0.7211, 𝐹 = 4.1356(0.0374) 
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where the weights have been estimated by running a standard multiple linear regression. As can 

be seen from the forecasting accuracy measures reported in Appendix C, Table C.1, this model 

outperforms all the individual ones.  

5. Conclusions 

This paper carries out a comprehensive examination of the role played by the frequency of 

daily abnormal returns in driving Bitcoin returns over the period from June 2013 to February 

2020. It extends the work of Caporale et al. (2019) by considering a much wider range of models 

over a longer sample period,4 exploring the role of the difference between the frequency of 

positive and negative abnormal returns as well, and assessing the forecasting accuracy of the 

rival models in addition to their in-sample performance. The results indicate that, if one takes 

into account both in-sample and out-of-sample performance, piecewise linear models are the 

best for Bitcoin returns. However, in terms of forecasting accuracy they are outperformed by a 

model that combines the top five to produce “consensus” forecasts.  

On the whole, the results suggest that the frequency of abnormal returns is informative about 

price dynamics in the cryptocurrency market. They are of interest to both practitioners (who can 

use this information for their investment decisions) and academics (since they represent 

evidence again the EMH). More specifically, they imply that investors and traders can use the 

frequency of abnormal returns for the purpose of predicting prices and designing profitable 

trading strategies in the cryptocurrency market. For example, the number of days with negative 

and positive abnormal returns during a month can be used to predict Bitcoin returns—the 

models estimated in this paper provide benchmark values against which buying/selling 

decisions can be made. The detected lack of efficiency in the Bitcoin market also represents an 

interesting issue for academics to investigate in the future by empirically testing alternative 

explanations and/or developing new models based on the more realistic assumptions of bounded 

rationality and learning. 
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Appendix A 

Table A.1: Frequency distribution of Bitcoin, May 2013-February 2020 

 

Plot Frequency 

<-0.04 242 

-0.03 102 

-0.02 140 

-0.01 220 

0 462 

0.01 481 

0.02 282 

0.03 184 

0.04 118 

0.05 85 

>0.05 204 

 
This table presents estimates of the frequency distribution for Bitcoin log returns over the period 

01.05.2013-28.02.2020. The first column reports the values for Bitcoin log returns, the second column 

the corresponding frequency. 

 
Figure A.1: Frequency distribution of Bitcoin, May 2013-February 2020 

 

This figure presents the frequency distribution estimates for Bitcoin log returns over the period 1 May 2013-

28 February 2020. The plot size is displayed on the x axis; the number of log returns fitting the corresponding 

plot is displayed on the y axis. 
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Appendix B 
 

Table B.1: Predicted vs actual values over the period January 2019-February 2020 

 
Period Jan 2019 Feb 2019 Mar 2019 Apr 2019 May 2019 Jun 2019 Jul 2019 Aug 2019 Sep 2019 Oct 2019 Nov 2019 Dec 2019 Jan 2020 Feb 2020 

Actual value -0.0791 0.1086 0.0629 0.2649 0.4715 0.2323 -0.07 -0.0461 -0.1494 0.1036 -0.195 -0.0509 0.2622 -0.0837 

Model 1 0.0901 0.1855 0.0901 -0.0052 0.2808 0.2808 -0.1006 -0.196 -0.0052 0.1855 -0.2913 0.0901 0.2808 -0.196 

Model 2 0.074 0.1734 0.0651 -0.0165 0.2817 0.2995 -0.0803 -0.1886 -0.0165 0.1734 -0.2968 0.074 0.2639 -0.2064 

Model 3 -0.1279 0.0685 0.19 0.0874 -0.0381 -0.0061 0.0977 0.1102 0.038 0.0036 0.0449 0.0847 0.0681 0.0329 

Model 4 -0.0823 0.0201 0.1232 0.1465 0.0429 -0.0301 -0.0044 0.0882 0.1236 0.0717 0.0005 -0.0014 0.0584 0.1033 

Model 5 0.1021 0.2006 0.0929 0.0058 0.3038 0.3166 -0.0693 -0.1768 0.0011 0.1927 -0.2858 0.0915 0.2833 -0.1951 

Model 6 0.1515 0.1458 0.0518 0.0285 0.2411 0.3314 -0.0836 -0.2201 0.0113 0.159 -0.3041 0.0874 0.2551 -0.2 

Model 7 0.1093 0.2075 0.0316 -0.0498 0.2549 0.329 -0.044 -0.1711 -0.0482 0.1427 -0.2923 0.1068 0.2839 -0.2041 

Model 8 0.1187 0.2138 0.1157 0.0177 0.3065 0.3053 -0.0825 -0.1803 0.012 0.2044 -0.2798 0.106 0.2985 -0.1856 

Model 9 0.1681 0.1514 0.0824 0.0329 0.2439 0.3138 -0.1054 -0.2224 0.0176 0.1727 -0.2984 0.1 0.2745 -0.1929 

Model 10 0.1951 0.1855 0.1186 0.0563 0.276 0.3458 -0.0868 -0.1971 0.0398 0.1929 -0.2766 0.1172 0.2962 -0.1748 

Model 11 0.0402 0.1368 0.0257 -0.0419 0.2479 0.2769 -0.0807 -0.1918 -0.0419 0.1368 -0.3029 0.0402 0.219 -0.2207 

Model 12 0.049 0.1335 0.049 -0.0356 0.218 0.218 -0.1201 -0.2046 -0.0356 0.1335 -0.2892 0.049 0.218 -0.2046 

Model 13 0.0621 0.1632 0.0414 -0.0183 0.2849 0.3263 -0.0366 -0.1583 -0.0183 0.1632 -0.2801 0.0621 0.2436 -0.1997 

Model 14 0.081 0.17 0.081 -0.0079 0.259 0.259 -0.0969 -0.1859 -0.0079 0.17 -0.2748 0.081 0.259 -0.1859 

Model 15 0.0813 0.1873 0.0578 -0.0013 0.3168 0.3636 -0.0136 -0.143 -0.0013 0.1873 -0.2725 0.0813 0.2699 -0.1899 

Model 16 0.1331 0.2218 0.1331 0.0443 0.3106 0.3106 -0.0444 -0.1332 0.0443 0.2218 -0.222 0.1331 0.3106 -0.1332 

Model 21 -0.0317 0.2072 0.0911 0.0224 0.3233 0.3549 -0.0967 -0.1369 -0.0675 0.2072 -0.1771 -0.0317 0.2917 -0.1413 

Model 22 0.0404 0.1575 0.0404 -0.0262 0.2745 0.2745 -0.0927 -0.1593 -0.0262 0.1575 -0.2259 0.0404 0.2745 -0.1593 

Model 23 0.0923 0.1523 0.0854 0.0172 0.2755 0.2655 -0.0638 -0.1929 0.0172 0.1523 -0.2168 0.0923 0.2386 -0.1413 

Model 24 0.0678 0.1159 0.0589 -0.0027 0.2386 0.4327 -0.0115 -0.1891 -0.0027 0.1159 -0.2147 0.0678 0.2187 -0.1502 

Model 25 0.0662 0.1389 0.074 -0.0066 0.242 0.2821 -0.0979 -0.1838 -0.0066 0.1389 -0.2206 0.0662 0.1978 -0.1369 

Model 26 0.0608 0.1046 0.0659 -0.0058 0.2375 0.441 -0.0089 -0.194 -0.0058 0.1046 -0.2001 0.0608 0.2053 -0.1363 

Model 27 0.0696 0.1129 0.0618 0.0005 0.2598 0.4395 -0.0214 -0.2233 0.0005 0.1129 -0.2271 0.0696 0.1813 -0.1414 

Model 1.1 (w) 0.0777 0.1646 0.0777 -0.0092 0.2515 0.2515 -0.0961 -0.183 -0.0092 0.1646 -0.2699 0.0777 0.2515 -0.183 

Model 2.1 (w) 0.0693 0.1609 0.0626 -0.0156 0.2592 0.2725 -0.0806 -0.1788 -0.0156 0.1609 -0.2771 0.0693 0.2459 -0.1922 

Multi 1 -0.0226 0.1748 0.065 -0.0545 0.411 0.2411 -0.0362 -0.0702 -0.0545 0.1748 -0.1444 -0.0226 0.2451 -0.0749 
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Appendix C 
Table C.1: Forecasting accuracy tests 

Parameter Root Mean 

Square 

Error 

(RMSE) 

Mean 

Absolute 

Error 

(MAE) 

Mean 

Percentage 

Error (MPE), 

% 

Mean Absolute 

Percentage 

Error 

(MAPE),% 

(Theil’s 

U) 

R2 

Standard linear multiple regressions 

Model 1  0.1309 0.1113 -3.0507 107.28 0.6955 0.495 

Model 1.1(w) 0.1273 0.1013 4.7343 95.0821 0.6784 0.522 

Model 2 0.1285 0.1046 -0.5218 96.827 0.6870 0.513 

Model  2.1(w) 0.1260 0.0997 5.4352 90.3987 0.6767 0.532 

ARMA, ARMAX models 

Model 3 0.2058 0.1741 103.8938 141.4790 0.8682 -0.247 

Model 4 0.1877 0.1502 94.8069 109.0351 0.9447 -0.037 

Model 5  0.1291 0.1107 1.3556 104.9 0.6820 0.508 

Model 6 0.1408 0.1156 7.7027 110.75 0.6868 0.416 

Model 7 0.1411 0.1167 16.021 107.84 0.7054 0.413 

Model 8 0.1321 0.1164 -0.1606 113.63 0.6942 0.485 

Model 9 0.1429 0.1195 4.5689 117.73 0.6941 0.398 

Model 10 0.1439 0.1246 8.2045 123.69 0.6978 0.390 

Quantile regressions 

Model 11 0.1301 0.1025 0.9795 90.522 0.7004 0.501 

Model 12 0.1313 0.1033 -0.8925 93.267 0.7036 0.476 

Model 13 0.1240 0.1035 10.751 92.638 0.6675 0.546 

Model 14 0.1279 0.1030 2.9263 97.844 0.6814 0.518 

Model 15 0.1254 0.1075 13.893 98.023 0.6639 0.536 

Model 16 0.1316 0.1134 19.273 111.13 0.7006 0.490 

Logit and Probit regressions 

Model 17  0.3463 0.2310 - - - - 

Model 18 0.3475 0.2286 - - - - 

Model 19 0.3427 0.2261 - - - - 

Model 20 0.3443 0.2238 - - - - 

Piecewise linear regressions 

Model 21  0.0999 0.0796 -22.7047 63.3832 0.5485 0.706 

Model 22 0.1162 0.0889 6.9187 78.8485 0.6600 0.602 

Non-linear regressions (for the factors) 

Model 23 0.1222 0.0949 16.248 92.625 0.6805 0.560 

Model 24 0.1347 0.1048 19.289 91.271 0.6788 0.466 

Non-linear regressions (for the estimated parameters) 

Model 25 0.1236 0.0958 12.1089 85.7383 0.6838 0.550 

Model 26 0.1352 0.1028 19.706 88.422 0.6858 0.461 

Model 27 0.1366 0.1081 14.342 95.903 0.7165 0.450 

Consensus forecast 

Multi 1 0.0973 0.0601 16.2657 43.0299 0.6472 0.721 
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Appendix D 
 

Figure D.1: Forecasting accuracy tests 

 
Figure D.1: Cross-correlation between Bitcoin log returns and the frequency of the Delta parameter over the 

whole sample period for different leads and lags 

 

This figure displays the correlation coefficients between Bitcoin log returns and Delta over the whole sample period with 

lags in the interval [-10…+10]. 
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Appendix E 

 
Table E.1: Regression analysis results: Bitcoin log returns 

 

Parameter Model 1 Model 1.1 Model 2 Model 2.1 

Delta  Delta  Frequency of 

negative and 

positive 

abnormal 

returns as 

separate 

variables 

Frequency of 

negative and 

positive 

abnormal 

returns as 

separate 

variables 

𝒂𝟎  0.0901 

(0.000) 

0.0777 

(0.000) 

0.0650 (0.024) 0.0626 

(0.023) 

Coefficient on abnormal returns 

(𝒄𝒂𝒔𝒆 𝒐𝒇 𝑫𝒆𝒍𝒕𝒂 ) 

0.0953 

(0.000) 

0.0868 

(0.000) 

- - 

Coefficient on the frequency of 

negative abnormal returns 

-  -0.0904 (0.000) -0.0849 

(0.000) 

Coefficient on the frequency of 

positive abnormal returns 

-  0.0993 (0.000) 0.0916 

(0.000) 

R2 0.7721 0.7652 0.7767 0.7722 

p-value 0.0000 0.0000 0.0000 0.0000 

Log Likelihood 34.3527 33.3493 35.0369 34.3603 

Model Standard Error 0.1471 0.1493 0.1467 0.1482 

AIC -64.7054 -62.6986 -64.0739 -62.7206 

BIC -60.2960 -58.2892 -57.4598 -56.1066 
* P-values are in parentheses 
 

This table presents coefficient estimates and p-values (in parentheses) from the regression models. The first column 

reports parameter estimates for Bitcoin log returns, the second and the third for Delta (cases of Model 1 and 1.1 

respectively); the fourth the frequency of negative and positive abnormal returns as separate variables in Model 2, 

the fifth the frequency of negative and positive abnormal returns as separate variables in Model 2.1. 
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Appendix F 

  
Table F.1: Parameter estimates for the best ARMA models 

 

Parameter Model 3: 

ARMA(2,2) 

Model 4: 

ARMA(3,3) 

 
0.0516(0.2103) 0.0513(0.1887) 

 0.3486(0.006) - 

 -0.7381(0.000) -0.3874(0.000) 

 - -0.6209(0.000) 

 
-0.3418(0.000) - 

 
1.000(0.000) 0.5790(0.000) 

 - 0.6487(0.000) 

R2

 
0.0562 0.0373 

Log Likelihood -12.3733 -13.3259 

Model Standard Error 0.2831 0.2885 

AIC 36.7466 38.6518 

BIC 49.9748 51.8800 

 
This table presents the coefficient estimates and p-values (in parentheses) from the ARMA models. The first column 

reports the parameter estimates for Bitcoin log returns (Y), the second column shows the parameter estimates for Model 

3: ARMA (2,2); the third column for Model 4: ARMA (3,3).  
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Appendix G 
 
 

Table G.1: Estimated parameters for the ARMAX models: regressors 𝐹+ and 𝐹− 

 

Parameter Model 5 

ARMAX(1,1,2) 

Model 6 

ARMAX(2,2,2) 

Model 7 

ARMAX(3,3,2) 

 
0.0710(0.0674) 0.0678(0.0193) 0.0653(0.0185) 

 
0.9488(0.000) -1.3021(0.000) - 

 
- -0.7734(0.000) -0.1899(0.0932) 

 
- - -0.8078(0.000) 

 
-0.8963(0.000) 0.06834(0.000) - 

 
- 1.0000(0.000) 0.3585(0.000) 

 
- - 0.8009(0.000) 

 0.0996(0.000) 0.1020(0.000) 0.0973(0.000) 

 -0.0927(0.000) -0.0936(0.000) -0.0886(0.000) 

R2

 
0.7817 0.7912 0.7916 

Log Likelihood 35.8117 37.6596 37.5804 

Model Standard Error 0.1416 0.1342 0.1348 

AIC -59.6234 -59.3193 -59.1608 

BIC -46.3952 -41.6817 -41.5232 
 

This table presents coefficient estimates and p-values (in parentheses) from the ARMAX models. The first column reports parameter 

estimates for Bitcoin log returns (Y), the second column shows parameter estimates for model 5, the third column for model 6 and 

the fourth column for model 7. 
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Table G.2: Estimated parameters for the ARMAX models: regressor Delta 

 

Parameter Model 8 

ARMAX(1,1,1) 

Model 9 

 ARMAX(2,2,1) 

Model 10 

 ARMAX(3,3,1) 

 
0.0914(0.005) 0.0913(0.000) 0.0926(0.007) 

 
0.9445(0.000) -1.2701(0.000) -0.3639(0.020) 

 
- -0.7467(0.000) 0.4780(0.000) 

 
- - 0.7355(0.000) 

 
-0.8828(0.000) 1.402(0.000) 0.5240(0.000) 

 
- 1.0000(0.000) -0.2618(0.050) 

 
- - -0.8914(0.000) 

 0.0966(0.000) 0.0982(0.000) 0.0992(0.000) 

R2

 
0.7793 0.7882 0.7942 

Log Likelihood 35.4427 37.1313 38.1502 

Model Standard Error 0.1424 0.1352 0.1330 

AIC -60.8857 -60.2627 -58.3005 

BIC -49.8622 -44.8298 -38.4582 

 

This table presents coefficient estimates and p-values (in parentheses) from the ARMAX models. The first column reports parameter 

estimates for Bitcoin log returns (Y), the second column shows parameter estimates for model 8, the third column for model 9 and the 

fourth column for model 10. 
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Appendix H 
 

Table H.1: Estimated parameters for the quantile regression: case of Q=0.4 

 

Parameter Model 11 

,  

Model 12 

Delta 

 
0.0257(0.4261) 0.0489(0.0123) 

 0.0966(0.000) 0.0845(0.000) 

 -0.0821(0.000) - 

R2

 
0.7676 0.7477 

Log Likelihood 34.8065 33.7560 

Model Standard Error 0.1093 0.1140 

AIC -63.6130 -63.5120 

BIC -56.9989 -59.1026 

 

Table H.2: Estimated parameters for the quantile regression: case of Q=0.5 

 

Parameter Model 13 

,  

Model 14 

Delta 

 
0.0414(0.1360) 0.0810(0.000) 

 0.1010(0.000) 0.0889(0.000) 

 -0.0803(0.000) - 

R2

 
0.7663 0.7682 

Log Likelihood 37.2054 33.5500 

Model Standard Error 0.1055 0.1115 

AIC -68.4109 -62.9594 

BIC -61.7968 -58.5500 

 

Table H.3: Estimated parameters for the quantile regression: case of Q=0.6 

 

Parameter Model 15 

,  

Model 16 

Delta 

 
0.0578(0.0339) 0.1330(0.000) 

 0.1060(0.000) 0.0887(0.000) 

 -0.0825(0.000) - 

R2

 
0.7522 0.7458 

Log Likelihood 37.2322 32.8061 

Model Standard Error 0.1080 0.1173 

AIC -68.4645 -61.6123 

BIC -61.8504 -57.2029 

 

These tables present coefficient estimates and p-values (in parentheses) from the quantile regression models. The first column reports 

parameter estimates for Bitcoin log returns (Y), the second and the third column shows parameter estimates for model of interest. 
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Appendix I 
Table I.1: Logit and Probit regression analysis results  

 

Parameter Logit Probit 

Model 17 

 ,  

Model 18 Delta Model 19  

,  

Model 20 Delta 

 0.7506 (0.140) 0.9782 (0.018) 0.4375(0.136) 0.5682(0.014) 

 1.4789 (0.000) 1.3846 (0.000) 0.8613(0.000) 0.8137(0.000) 

 -1.3585(0.000) - -0.7981(0.000) - 

McFadden R-squared 0.4759 0.4695 0.4799 0.4742 

Log Likelihood -24.2414 -24.5353 -24.0562 -24.3160 

AIC 54.4829 53.0706 54.1124 52.6320 

BIC 61.0970 57.4799 60.7265 57.0414 

The percentage of 

correctly predicted 

cases 

82.1 80.6 82.1 80.6 

LR statistic 44.0253(0.000) 43.4376(0.000) 44.3958(0.000) 43.8762(0.000) 

This table presents coefficient estimates and p-values (in parentheses) from the Logit and Probit regression models. The first column 

reports parameter estimates for Bitcoin log returns (Y), the second and the third column shows parameter estimates for Logit models, the 

fourth and the fifth reports Probit models estimates. 

 

Table I.2: Estimated parameters for the piecewise linear regression   

 

Parameter Model 21 

,  

Model 22 

Delta 

 

-0.0339(0.359) 0.0404(0.091) 

 

0.0038(0.820) 0.0665(0.000) 

 

-0.0358(0.002) 0.0504(0.003) 

 

0.0911(0.002) - 

 

0.1003(0.000) - 

 

-0.0845(0.000) - 

R2

 
0.8707 0.8012 

Log Likelihood 53.3363 38.9128 

Model Standard 

Error 

0.1144 0.1385 

AIC -94.6726 -71.8255 

BIC -81.4444 -65.2115 

This table presents coefficient estimates and p-values (in parentheses) from the piecewise linear regression 

models. The first column reports parameter estimates for Bitcoin log returns (Y), the second and the third 

column shows parameter estimates for the piecewise linear regression models. 
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Appendix J 

 

 
Table J.1: Non-linear regression model type 1: estimated parameters   

 

Parameter Model 23 Model 24 

 

0.0853(0.000) 0.0588(0.001) 

 
0.0755(0.000) 0.0734(0.000) 

 
0.0029(0.004) 0.0065(0.000) 

 
0.0022(0.013) 0.0030(0.000) 

 
- -0.0038(0.000) 

 
- 0.0012(0.004) 

R2

 
0.8166 0.8783 

Log Likelihood 41.6371 55.3723 

Model Standard 

Error 

0.1340 0.1109 

AIC -75.2742 -98.7446 

BIC -66.4554 -85.5164 

 
This table presents coefficient estimates and p-values (in parentheses) from the Non-linear regression model type 1. The first column 

reports parameter estimates for Bitcoin log returns (Y), the second and the third column shows parameter estimates for the Non-linear 

regression model type 1. 
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Table J.2: Non-linear regression model type 2: estimated parameters 

Parameter Model 25 Model 26 Model 27 

 

0.0739(0.047) 0.0658(0.036) 0.0618(0.026) 

 
- - - 

 
- 0.0049(0.007) - 

 
- 0.0032(0.000) 0.0031(0.000) 

 
- -0.0038(0.000) -0.0036(0.000) 

 
- - - 

 
- - -0.0006(0.005) 

 
0.0511(0.008) 0.0590(0.003) 0.0481(0.000) 

 
-0.0589(0.030) -0.0709(0.011) -0.0472(0.002) 

 
1.2753(0.000) 1.1776(0.000) 1.4688(0.000) 

 
1.1609(0.000) 0.9531(0.000) 1.4018(0.000) 

R2

 
0.7919 0.8787 0.8814 

Log Likelihood 37.4026 55.4726 56.2452 

Model Standard 

Error 

0.1439 0.1126 0.1113 

AIC -64.8053 -94.9453 -96.4904 

BIC -53.7818 -77.3078 -78.8529 

 
This table presents coefficient estimates and p-values (in parentheses) from the Non-linear regression model type 2. The first column 

reports parameter estimates for Bitcoin log returns (Y), the second, the third and the fourth column shows parameter estimates for the 

Non-linear regression model type 2. 
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