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Strategic Diversification for Asynchronous 

Asset Trading: Insights from Generalized 

Coherence Analysis of Cryptocurrency Price 

Movements 

Nirvik Sinha,*† Yuan Yang ‡ 

Abstract. Non-linear interactions between cryptocurrency price movements can elicit cross-

frequency coupling (CFC) wherein one set of frequencies in the 1st timeseries is coupled to 

another set of frequencies in the 2nd timeseries. To investigate this, we use a generalized 

coherence approach to detect and quantify both linear (i.e., iso-frequency coupling, IFC) and 

non-linear coherence (CFC) and the associated phase relationships between the intra-day 

price changes of various pairs of cryptocurrencies for the year 2020. Using this information, 

we further assess the risk reduction associated with diversification of portfolios between each 

pair of a small market capital and a large market capital cryptocurrency, for both synchronous 

and asynchronous trading conditions. While mean pairwise IFC values were lower for 

smaller cryptocurrencies, pairwise CFC values were more heterogeneous and had no 

correlation with the market capital size. Diversification of portfolios resulted in reduced risk 

for synchronously-traded pairs of those cryptocurrencies which had low IFC. For 

asynchronous trading conditions, if the larger market capital cryptocurrency was traded at a 

higher frequency, diversification almost always reduced risk. Thus, the novel approach used 

in this study reveals important insights into the complex dynamics that govern the price trends 

of cryptocurrencies. 

    

1. Introduction  

Since its inception in 2008,1 cryptocurrencies have been increasingly drawing the attention 

of investors and the general public for good and bad reasons alike. They have  been hailed for 

their highly secure blockchain technology facilitating fast, trustless and borderless financial 

transactions, fostering healthy economic competition and lowering market entry barriers. 2 

Furthermore, the year 2020 has seen the emergence of decentralized financing in the 
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cryptocurrency sphere. It may potentially revolutionize the traditional financial system by 

broadening financial inclusion, promoting barrier-free access and permissionless innovation, 

thereby heralding new opportunities for entrepreneurs and innovators.3 On the other hand, those 

with a more critical perspective have cautioned against several flaws associated with 

cryptocurrencies. For example, issues such as vulnerability to trust abuse, 4  long-term 

sustainability of a deflationary environment created by a limited supply, 5  threats from 

potentially devastating security flaws, and rampant misuse of privacy coins by malevolent and 

dishonest actors have cast doubts on the widespread acceptance of this relatively nascent 

technology.6, 7 Moreover, a major cause for concern among potential investors is the extreme 

price volatility that is a hallmark of cryptocurrencies fueled by speculative investment,5, 8 and 

occurrence of multiple price bubbles.9 

Notwithstanding the mixed reaction of the general public, cryptocurrency market 

capitalization has seen a dramatic resurgence since its collapse in 2018. At the time of writing 

of this paper, the total market capital is more than 900 billion US dollars with 1300 

cryptocurrencies having an individual market capital of more than 1 million US dollars.10 

Despite this diversity of options, the top five cryptocurrencies still wield an enormous 86% of 

the total market capital.10 Such huge capital concentration, especially in Bitcoin, leads the price 

movements of many cryptocurrencies to be highly correlated with the ones at the top of the 

market capital rankings.11 It has also been shown that collaborative development of multiple 

cryptocurrencies leads to their correlated returns.12 Moreover, within each cluster of correlated 

cryptocurrencies, newer ones appear poised to follow the trend of their ‘elders’.13 At times of 

uncertainty, herding behavior dominates the cryptocurrency market which in turn increases 

systematic risk and leads to loss of market efficiency.14 Nevertheless, as the cryptocurrency 

market continues to mature, there has been an emergence of complexity in the form of distinct 

assets with unique use cases.15 Along with this, unfortunately, there has also been an explosion 

of scams and clones of existing assets with no inherent use value.16  

In such a rapidly evolving market, portfolio diversification can serve to increase returns for 

institutional and retail investors while insulating them from the risks of concurrent price 

collapses of multiple assets and fraudulent exit scams.17  Analysis of the relationship among 

price movements of different assets can reveal important insights into the collective behavior of 

the market, thereby providing an optimal means of portfolio diversification.18, 19  For example, 

application of diagonal and asymmetric diagonal BEKK models to the intra-day price data of 

eight cryptocurrencies showed strong pairwise positive correlations.20 Subsequently, the bi-

variate diagonal BEKK model gave evidence of bi-directional price-shock transmission 

between Bitcoin and both Ethereum and Litecoin, and price volatility spillover effects between 

all three of these pairs.21 Understanding the interactions among different cryptocurrency has 

emerged as a powerful aid to effective and appropriate decision making for a diverse range of 

investment goals.22 Non-trivial hierarchical structures and cryptocurrency groupings have been 

found using cross-correlation analysis. Furthermore, minimum spanning trees constructed from 

the cross-correlation data revealed distinct and stable community structures.15 

Macroeconomic timeseries are influenced by factors operating at various timescales; 

therefore, their relationships are not necessarily homogenous across different frequencies.23 

This necessitates the use of coherence analysis for better understanding the relationships. For 

example, using wavelet-based coherence analysis, it was shown that specifically 8-32 day 

periodic correlations between online factors (e.g., Google trends, Wikipedia views, etc.) and 
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price strengthen significantly during bubble-like regimes of the cryptocurrency market. 24 

Applying the same approach to the top seven cryptocurrencies by market capital, another study 

showed that the benefit of portfolio diversification is confined to intra-week to monthly periods 

of trading for specific pairs.25 However, conventional coherence analysis can only detect linear 

interactions between two timeseries i.e., coupling at the same frequency (or scale), also known 

as iso-frequency coupling.  Non-linear interactions, on the other hand, can elicit cross-frequency 

coupling wherein one set of frequencies in the 1st timeseries is coupled to another set of 

frequencies in the 2nd timeseries. For example, if the price movements of two cryptocurrencies 

A and B exhibit non-linear interactions then there may exist a strong correlation between the 

daily price movements of A and the hourly price movements of B. This constitutes a harmonic 

interaction (wherein price movement of A at 1 cycle per day is coupled to that of B at 24 cycles 

per day). Likewise, there may also be subharmonic interactions. Therefore, assessing both the 

linear and non-linear interactions between cryptocurrency price movements can give a 

comprehensive picture of the complex dynamics that govern their market trends. Moreover, this 

information can be used to design risk-minimizing portfolios for those investors who trade 

multiple cryptocurrencies at different frequencies. 

The objective of this study was to detect and quantify linear and non-linear coherence and 

the associated phase relationships between the intra-day price changes of various 

cryptocurrency pairs for the year 2020 using a generalized coherence approach. Furthermore, 

this approach was also used to assess the risk reduction associated with diversification of 

portfolios between each pair of a small market capital and a large market capital cryptocurrency, 

for both synchronous and asynchronous trading conditions (i.e., same and different frequency 

of trading for each cryptocurrency in the pair). 

2. Methods 

The list of the top 250 cryptocurrencies by market capital (as on 1 January 2021) was 

obtained from CoinGecko.26 All fiat currency-pegged stablecoins (e.g., USDC) were excluded 

from analysis. Subsequently, minutely closing price data (in United States Dollars) were 

obtained for all cryptocurrencies in this list that were available for the full period of 1 January 

to 31 December 2020, on the Binance exchange. The Python wrapper of the Public Rest API 

for Binance was used for this purpose.27 The Binance exchange was chosen because it is a 

trusted and popular cryptocurrency exchange with the highest 24-hour trading volume 

worldwide.28 Additionally, it also provides full and free access to data of the granularity level 

(i.e., minutely) used in this study.  

The minutely return (i.e., price change) of each cryptocurrency was computed as: 

𝑃𝑖(𝑡) =  ln 𝐶𝑖(𝑡 + 𝛿𝑡) − ln 𝐶𝑖(𝑡)                    (1) 

where 𝐶𝑖(𝑡)  and 𝑃𝑖(𝑡)  are the price and minutely return (in USD Tether) of the 𝑖𝑡ℎ 

cryptocurrency, 𝑡 is the time and 𝛿𝑡 is the sampling interval (= 1 minute). In order to facilitate 

comparison between cryptocurrencies with different price volatilities, the computed returns 

were normalized using the following formula: 

𝑁𝑖(𝑡) =
𝑃𝑖(𝑡)− 𝜇𝑖

𝜎𝑖
                               (2) 
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where 𝑁𝑖 is the risk (i.e., volatility) -adjusted return of the 𝑖𝑡ℎ cryptocurrency. 𝜇𝑖 and 𝜎𝑖 are the 

mean and standard deviation of 𝑃𝑖 over the entire period of study.15 

For the purpose of subsequent analysis, the year-long timeseries of each cryptocurrency was 

segmented into 1-day non-overlapping epochs. The linear and non-linear interactions in the 

frequency range of 1-24 cycles per day (CPD) were assessed at the interval of 1 CPD. The 

generalized coherence measure, i.e., n:m coherence (NMC), was used for this purpose.29 In 

order to facilitate the understanding of this measure, let’s begin by revisiting classical 

coherence. Let X(f), Y(f) be the Fourier Transform of the two timeseries of a pair of 

cryptocurrencies. The cross- (𝑆𝑋𝑌) and auto-spectra (SX and 𝑆𝑌) of the timeseries are defined as: 

𝑆𝑋𝑌(𝑓𝑋, 𝑓𝑌) =< X(𝑓𝑋)(𝑌(𝑓𝑌))
∗
>                                    (3) 

SX(𝑓𝑋) =< 𝑋(𝑓𝑋)(X(𝑓𝑋))
∗
>                                                                     (4) 

 

SY(𝑓𝑌) =< 𝑌(𝑓𝑌)(Y(𝑓𝑌))
∗
>                                                                     (5) 

 

where (. )∗ is the complex conjugate and < . > is the mean across the total number of epochs. 

The classical coherence between the two timeseries can then be computed as: 

𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒(𝑓𝑋, 𝑓𝑌) =
|𝑆𝑋𝑌(𝑓𝑋,𝑓𝑌)|

2

SX(𝑓𝑋)SY(𝑓𝑌)
                       (6) 

Therefore, the classical coherence is essentially the squared magnitude of the cross-spectrum 

(𝑆𝑋𝑌) normalized by the product of the auto-spectra of the individual timeseries ( SX and 𝑆𝑌). It 

provides the strength of correlation between the timeseries at different frequencies. The design 

of the classical coherence measure, however, constrains it to assess correlation between the two 

timeseries only for iso-frequency pairs where 𝑓𝑋 = 𝑓𝑌 i.e., linear interactions.  

Based on high-order statistics,30 the concepts of cross- and auto-spectra can be extended to 

also include the relationship between pairs of unequal frequencies (𝑓𝑋 ≠ 𝑓𝑌). For example, 

consider the simple case wherein we wish to explore the covariance between X(f) at frequency 

𝑓𝑋 and Y(f) at frequency 2𝑓𝑋. From the definition of bispectrum (see Table 3 in Nikias and 

Mendel, “Signal Processing”),30 the cross-spectrum for this interaction can be computed as: 

𝑆𝑋𝑌
12(𝑓𝑋, 𝑓𝑋 + 𝑓𝑋) =< 𝑋(𝑓𝑋)𝑋(𝑓𝑋)(Y(𝑓𝑋 + 𝑓𝑋))

∗
>                                           (7) 

which reduces to: 

𝑆𝑋𝑌
12(𝑓𝑋, 2𝑓𝑋) =< 𝑋

2(𝑓𝑋)(Y(2𝑓𝑋))
∗
>                                           (8) 

Likewise, using the definition of trispectrum, one can arrive at the following formula for 1:3 

interaction  (𝑓𝑌 = 3𝑓𝑋): 

𝑆𝑋𝑌
13(𝑓𝑋, 3𝑓𝑋) =< 𝑋

3(𝑓𝑋)(Y(3𝑓𝑋))
∗
>                                           (9) 

In general, cross- and auto-spectral interactions between a pair of unequal frequencies are 

given by the following equations: 
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𝑆𝑋𝑌
𝑛𝑚(𝑓𝑋, 𝑓𝑌) =< 𝑋

𝑛(𝑓𝑋)(𝑌
𝑚(𝑓𝑌))

∗
>                                      (10) 

𝑆𝑋
𝑛(𝑓𝑋) =< 𝑋

𝑛(𝑓𝑋)(𝑋
𝑛(𝑓𝑋))

∗
>                                                              (11) 

𝑆𝑌
𝑚(𝑓𝑋) =< 𝑌

𝑚(𝑓𝑌)(𝑌
𝑚(𝑓𝑌))

∗
>                                                             (12) 

where 𝑆𝑋𝑌
𝑛𝑚 is the higher order cross-spectrum and, 𝑆𝑋

𝑛 and 𝑆𝑌
𝑚 are the higher order auto-spectra 

for the two timeseries. A close inspection of the equations 7-9 show that their overall form 

remains the same as in equations 3-5, only now, the Fourier transforms are raised to integer 

powers 𝑚 and 𝑛. For example, 

X𝑛 = 𝑋(𝑓𝑋) ∙ 𝑋(𝑓𝑋) ∙ … ∙ 𝑋(𝑓𝑋)⏟              
𝑛

.                         (13) 

Here, 
𝑚

𝑛
 is the simple whole number ratio of 𝑓𝑋/𝑓𝑌 (e.g., if  𝑓𝑋 = 8, 𝑓𝑌 = 16 then m = 1, n = 

2). Using the generalized forms of the cross- and auto-spectra, one can then compute the n:m 

coherence measure as: 

𝑛:𝑚 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒(𝑓𝑋, 𝑓𝑌) =
|𝑆𝑋𝑌
𝑛𝑚 (𝑓𝑋,𝑓𝑌)|

2

𝑆𝑋
𝑛(𝑓𝑋)𝑆𝑌

𝑚(𝑓𝑌)
                  (14) 

Thus, the n:m coherence is a straightforward extension of the classical coherence for 

distinguishably determining the strength of both cross-frequency (𝑓𝑋 ≠ 𝑓𝑌) and iso-frequency 

(𝑓𝑋 = 𝑓𝑌) coupling between the timeseries. When 𝑓𝑋 = 𝑓𝑌, we have m = n =1, then the NMC is 

equivalent to the classical (linear) coherence for iso-frequency coupling.31 When 𝑓𝑋 ≠ 𝑓𝑌, then 

the NMC indicates the coupling across different frequency components (i.e., cross-frequency 

coupling). 32  Therefore, linear (iso-frequency) as well as non-linear (cross-frequency) 

interactions can be assessed using this measure. The n:m mapping can generate both integer 

(
𝑚

𝑛
∈ ℤ+)  and non-integer (

𝑚

𝑛
∈ (ℝ+ − ℤ+))  harmonic (n > m) and sub-harmonic (n < m) coupling 

between the two timeseries in the frequency domain.29 As a generalized coherence method,  the 

NMC is a metric indicating cross-frequency coherence between timeseries, which is different 

from other cross-frequency coupling methods such as the phase-amplitude coupling reflecting 

how a low-frequency phase modulates a high-frequency amplitude.33  

According to Cauchy-Schwarz-inequality, we have: 

|𝑆𝑋𝑌
𝑛𝑚(𝑓𝑋, 𝑓𝑌)|

2 ≤ 𝑆𝑋
𝑛(𝑓𝑋)𝑆𝑌

𝑚(𝑓𝑌)                                        (15) 

Thus, the NMC is bounded by 0 and 1, where 1 indicates that the two timeseries are perfectly 

coupled at the tested frequency pair (𝑓𝑋, 𝑓𝑌). As the NMC values are computed by comparing 

different frequency pairs between timeseries, the significant threshold was adapted with a 

Bonferroni correction to control the type I error (family-wise error rate: 0.05).29 There are 576 

frequency pairs that were included for Bonferroni corrections (1-24 CPD in the 1st timeseries × 

1-24 CPD in the 2nd timeseries). More details of the NMC method is available in Yang et al., 

“A Generalized Coherence Analysis,” (2016).29 

The higher order phase delay Φ(𝑓𝑋, 𝑓𝑌) for each frequency pair 𝑓𝑋, 𝑓𝑌 (where Φ(𝑓𝑋, 𝑓𝑌)  =
𝑛𝜙(𝑓𝑋) − 𝑚𝜙(𝑓𝑌) 𝑎𝑛𝑑  𝑛𝑓𝑋 = m𝑓𝑋) was computed as (range = −𝜋  to  + 𝜋): 
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Φ(𝑓𝑋, 𝑓𝑌) =  tan
−1 {

ℜ[𝑆𝑋𝑌
∗𝑛𝑚(𝑓𝑋,𝑓𝑌)]

ℑ[𝑆𝑋𝑌
∗𝑛𝑚(𝑓𝑋 ,𝑓𝑌)]

}                                                     (16) 

 

where the normalized higher order cross-spectrum is given by 

 

𝑆𝑋𝑌
∗𝑛𝑚(𝑓𝑋, 𝑓𝑌) =  

𝑆𝑋𝑌
𝑛𝑚(𝑓𝑋,𝑓𝑌)

√𝑆𝑋
𝑛(𝑓𝑋)𝑆𝑌

𝑚(𝑓𝑌)
                   (17) 

 

and ℜ[. ] , ℑ[. ]  are the real and imaginary parts respectively. Just like the n:m coherence 

measure, equations 13-14 are straightforward extensions of the classical phase delay and 

normalized cross-spectrum.  
Since the IFC values range from 0 to 1 and the IFC of a timeseries with itself is 1, a distance 

metric Dij = 1 − IFCij  can be defined between every pair of cryptocurrencies i  and j which 

allows the whole set of cryptocurrencies to be treated as a network. Here, each asset is a node 

in the network and the connectivity matrix D is a measure of adjacency between the nodes.34 

An informative way of visualizing this network is to perform a multilevel hierarchical clustering 

of the nodes using D to construct a cluster tree or a dendrogram. In this study, the MATLAB 

function linkage (Statistical and Machine Learning Toolbox) was used to construct a binary 

cluster tree.35 In order to verify that the distance between the two clusters that contain any two 

assets i  and j  (known as the cophenetic distance) reflect the original distance Dij accurately, 

the correlation coefficient between them was computed (known as the cophenetic correlation 

coefficient).36 Subsequently, the linkage algorithm that maximized the cophenetic correlation 

coefficient was chosen for the cluster tree construction.  

Next, the risk reduction associated with diversification of portfolio between two 

cryptocurrencies (X, Y) as compared to a portfolio having only the larger market capital 

cryptocurrency (X) was assessed for each pair of cryptocurrencies. For this purpose, the optimal 

weightage of Y in its mixed portfolio with X was computed from the following formula:19 

 

𝑤𝑌 =
𝜎𝑋
2−𝑐𝑜𝑣(𝑋,𝑌)

𝜎𝑋
2+𝜎𝑌

2−2𝑐𝑜𝑣(𝑋,𝑌)
                           (18) 

 

Since we are interested in computing this measure for each trading frequency pair (𝑓𝑋, 𝑓𝑌) 
individually, we used the generalized cross- and auto-spectra (which are the frequency domain 

analogs of 𝜎2 and 𝑐𝑜𝑣(𝑋, 𝑌) respectively) to define a similar measure 𝑤𝑓𝑋,𝑓𝑌
𝑌  as follows: 

 

𝑤𝑓𝑋,𝑓𝑌
𝑌 =

𝑆𝑋
𝑛(𝑓𝑋)− |𝑆𝑋𝑌

𝑛𝑚(𝑓𝑋,𝑓𝑌)|

𝑆𝑋
𝑛(𝑓𝑋)+ 𝑆𝑌

𝑚(𝑓𝑌)−2|𝑆𝑋𝑌
𝑛𝑚(𝑓𝑋,𝑓𝑌)|

                         (19) 

 

where 𝑤𝑓𝑋,𝑓𝑌
𝑋  = 0 if 𝑤𝑓𝑋,𝑓𝑌

𝑋  < 0 and 𝑤𝑓𝑋,𝑓𝑌
𝑋  = 1 if 𝑤𝑓𝑋,𝑓𝑌

𝑋  > 1. The weightage of X is given by 

𝑤𝑓𝑋,𝑓𝑌
𝑋  = 1 - 𝑤𝑓𝑋,𝑓𝑌

𝑌 . The mixed portfolio variance is then given by: 

 

𝑀𝑋𝑌(𝑓𝑋, 𝑓𝑌) =  𝑤𝑓𝑋,𝑓𝑌
𝑋 𝑆𝑋

𝑛(𝑓𝑋) + 𝑤𝑓𝑋,𝑓𝑌
𝑌 𝑆𝑌

𝑚(𝑓𝑌) + 𝑤𝑓𝑋 ,𝑓𝑌
𝑋 𝑤𝑓𝑋,𝑓𝑌

𝑌 |𝑆𝑋𝑌
𝑛𝑚(𝑓𝑋, 𝑓𝑌)|                     (20) 

 

which is derived from its time domain counterpart: 19 
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𝜎𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜
2 = 𝑤𝑌𝜎𝑌

2 +𝑤𝑋𝜎𝑋
2 +𝑤𝑋𝑤𝑌𝑐𝑜𝑣(𝑋, 𝑌)               (21) 

 

The risk reduction of the mixed portfolio with respect to the portfolio containing only X for the 

trading frequency 𝑓𝑋, 𝑓𝑌 is then defined as:37 

 

𝑅𝑅𝑓𝑋,𝑓𝑌 = 1 −
𝑀𝑋𝑌(𝑓𝑋 ,𝑓𝑌)

𝑆𝑋
𝑛(𝑓𝑋)

                      (22) 

 

which is again analogous to its time domain counterpart: 

 

𝑅𝑅 = 1 −
𝜎𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜
2

𝜎𝑋
2                            (23) 

 

Hence, the higher the value of 𝑅𝑅𝑓𝑋,𝑓𝑌 , the greater is the reduction of risk achieved by 

diversifying the portfolio between X and Y as compared to a portfolio containing only X. 

Moreover, the risk reduction computed this way enables its categorization into (i) synchronous 

(𝑓𝑋 = 𝑓𝑌) and (ii) asynchronous (𝑓𝑋 ≠ 𝑓𝑌) trading conditions for X and Y. The second category 

can be further divided into two sub-categories: (i) (𝑓𝑋 < 𝑓𝑌) and (ii) (𝑓𝑋 > 𝑓𝑌). This kind of 

categorization is especially useful because traders often have different investment periods for 

different cryptocurrencies. 

  

3. Results 

Among the list of 250 cryptocurrencies obtained from CoinGecko, minutely trading data (in 

USDT) for the full period of analysis was available for 55 cryptocurrencies on Binance 

exchange (after exclusion of stablecoins). They are listed in Table 1.  

 

Table 1. List of cryptocurrencies included in this study (ranked by market capitalization as 

of 1 January 2021). Stablecoins are excluded. 

1. Bitcoin 12. Theta Network 23. Waves 34. Hedera Hashgraph 45. Civic 

2. Ethereum 13. Tron 24. FTX Token 35. Bittorrent 46. Ankr 

3. Ripple (XRP) 14. Tezos 25. Blockstack 36. Nano 47. iExec RLC 

4. Litecoin 15. Cosmos 26. OMG Network 37. Enjin Coin 48. Tomochain 

5. Bitcoin Cash 16. VeChain 27. Ontology 38. Band Protocol 49. Fantom 

6. Binance Coin 17. NEO 28. Algorand 39. Chilliz 50. Pundi X 

7. Cardano 18. Ziliqa 29. Basic Attention  Token 40. Holo 51. Wanchain 

8. Chainlink 19. Dash 30. REN 41. IOST 52. IoTeX 

9. Stellar 20. Dogecoin 31. 0X 42. Ravencoin 53. Harmony 

10. EOS 21. Ethereum Classic 32. ICON 43. Matic Network 54. Fetch.ai 

11. Monero 22. Zcash 33. Qtum 44. Kava.io 55. FunFair 
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 The n:m coherence and phase of price changes were computed pairwise for all the 55 

cryptocurrencies. Both iso- and cross-frequency coupling (IFC and CFC) were detected as 

shown by the sample case of Bitcoin vs. Litecoin in Figure 1.  

 

 

Fig. 1A. n:m coherence between intra-day price changes of Bitcoin vs. Litecoin. Both iso-

frequency (1:1) and cross-frequency coupling (m:n, where m ≠ n) were detected. Cross 

frequency coupling includes both integer and non-integer harmonic (m > n) and sub-harmonic 

(m < n) coupling. Thus, harmonic and sub-harmonic coupling includes all the coupling values 

above and below the iso-frequency coupling respectively (indicated by the black dashed 

diagonal line). Coherence values below the significance level are rendered 0 and omitted for 

clarity. 1B. n:m phase between intra-day price changes of Bitcoin vs. Ethereum. Phase 

values are in degrees and range from -180 to +180. [CPD = cycles per day] 

  

 

 For every pair of cryptocurrencies, the sum of significant (i) IFC, (ii) harmonic CFC, and 

(iii) sub-harmonic CFC were computed along with their mean phases. Figure 2 depicts the total 

IFC and corresponding mean phase for each pair of cryptocurrencies. Ethereum was found to 

have the highest mean IFC (mean ± std = 9.90 ± 4.16) while Ankr had the lowest mean IFC 

(mean ± std = 1.40 ± 3.16). Furthermore, correlation analysis revealed significant negative 

relationships between the market capital rank and (i) the mean IFC value (i.e., the mean of the 

total IFC of each cryptocurrency 𝑖 with all other cryptocurrencies, 𝜌 = −0.69 , p < 0.001; Fig. 

3A), (ii) the grand mean of the IFC phase (i.e., the average of the mean IFC phase of each 

cryptocurrency 𝑖 with all other cryptocurrencies, 𝜌 =  −0.74, p < 0.001; Fig. 3B). Nevertheless, 

there were certain exceptions to this generalization. For example, it can be seen in Figure 2 that 

Theta network had relatively low IFC with other cryptocurrencies despite having a large market 
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capitalization. On the other hand, IOST, Ravencoin and Matic network had high IFC with other 

cryptocurrencies while having low market capitalization. 
  

Fig. 2A. Total pairwise iso-frequency coupling (IFC). Each pixel value corresponds to the 

sum of all significant IFC values for each pair of cryptocurrencies. 
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Fig. 2B. Mean pairwise iso-frequency coupling phase (IFP). Each pixel value corresponds 

to the mean of the phases of all significant IFC values for each pair of cryptocurrencies. Phase 

values are in degrees and range from -180 to +180. 
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Fig 3A. Total iso-frequency coupling (IFC) vs. market capital rank. The total IFC mean ± 

std for each cryptocurrency along with the linear fit to the mean curve (mean total IFC = -0.1 × 

market capital rank + 8.8) is shown. 3B. Mean iso-frequency coupling phase (IFP) vs. market 

capital rank. The grand mean ± std of IFC phases for each cryptocurrency along with the linear 

fit to the mean curve (grand mean IFP = -2.7 × market capital rank + 74.7) is shown. Phase 

values are in degrees and range from -180 to +180. (mean ± std = black curve ± red shaded 

region; linear fit = blue dashed line; *** p < 0.001) 

Figure 4 depicts the total CFC and corresponding mean phase for each pair of 

cryptocurrencies. Since coherence is a symmetrical measure, depending on whether the values 

are read as Y vs. X or X vs. Y, they depict the total amount of subharmonic or harmonic CFC, 

i.e., the sum of all values below or above the main diagonal as shown in Figure 1, respectively. 

Moreover, by comparing Figure 2A with Figure 4A it can be seen that iso-frequency coupling 

is symmetric while cross-frequency coupling is antisymmetric about the main diagonal. Fetch.ai 

was found to have the highest mean subharmonic CFC (mean ± std = 5.3 ± 3.1) while Dogecoin 

had the lowest mean subharmonic CFC (mean ± std = 1.40 ± 3.16). On the other hand, Binance 

coin had the highest mean harmonic CFC (mean ± std = 6.9 ± 2.7) while FTX token had the 

lowest mean harmonic CFC (mean ± std = 2.7 ± 0.6). Unlike in the case of IFC, no significant 

correlations were found between the market capital rank and (i) the mean subharmonic CFC 

value (i.e., the mean of the total subharmonic CFC of each cryptocurrency 𝑖 with all other 

cryptocurrencies, 𝜌 = 0.10 , p = 0.48; Fig. 5A), or (ii) the grand mean of the CFC phase (i.e., 

the average of the mean subharmonic CFC phase of each cryptocurrency 𝑖 with all other 

cryptocurrencies, 𝜌 =  0.14, p = 0.31; Fig. 5B). Likewise, there was a weak negative correlation 

between the market capital rank and (i) the mean harmonic CFC value (i.e., the mean of the 

total harmonic CFC of each cryptocurrency 𝑖 with all other cryptocurrencies, 𝜌 = −0.33 , p = 

0.01; Fig. 5C), but no significant correlation between the market capital rank and the grand 
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mean of the harmonic CFC phase (i.e., the average of the mean harmonic CFC phase of each 

cryptocurrency 𝑖 with all other cryptocurrencies, 𝜌 = -0.08, p = 0.57; Fig. 5D). 

 

 

 

 

Fig. 4A. Total pair-wise cross-frequency coupling (CFC). Each pixel value corresponds to 

the sum of all significant CFC values for each pair of cryptocurrencies. 
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Fig. 4B. Mean pair-wise cross-frequency coupling phase (CFP). Each pixel value 

corresponds to the mean of the phases of all significant CFC values for each pair of 

cryptocurrencies. Phase values are in degrees and range from -180 to +180. (X:Y = subharmonic 

coupling; Y:X = harmonic coupling) 
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Fig. 5A. Total subharmonic cross-frequency coupling (CFC) vs. market capital rank. The 

total subharmonic CFC mean ± std for each cryptocurrency along with the linear fit to the mean 

curve (mean total subharmonic CFC = 0.006 × market capital rank + 2.9) is shown. 5B. Mean 

subharmonic cross-frequency coupling phase (CFP) vs. market capital rank. The grand 

mean ± std of subharmonic CFC phases for each cryptocurrency along with the linear fit to the 

mean curve (grand mean subharmonic CFP = 0.14 × market capital rank – 6.74) is shown. 5C. 

Total harmonic cross-frequency coupling (CFC) vs. market capital rank. The total 

harmonic CFC mean ± std for each cryptocurrency along with the linear fit to the mean curve 

(mean total harmonic CFC = -0.03 × market capital rank + 4.0) is shown. 5D. Mean harmonic 

cross-frequency coupling phase (CFP) vs. market capital rank. The grand mean ± std of 

harmonic CFC phases for each cryptocurrency along with the linear fit to the mean curve (grand 

mean harmonic CFP = -0.06 × market capital rank + 4.33) is shown. Phase values are in degrees 

and range from -180 to +180. (mean ± std = black curve ± red shaded region; linear fit = blue 

dashed line; NS = not significant, p > 0.05; * p <= 0.05). 
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Next, the MATLAB function linkage was used to construct a binary cluster 

tree/dendrogram to visualize the multilevel hierarchical clustering of various cryptocurrencies 

based on a distance metric calculated from the pair-wise total IFC. The total IFC was normalized 

by its theoretical maximum (=24) for this purpose. The dendrogram obtained by the ‘average’ 

algorithm of the linkage function was found to have the highest cophenetic correlation 

coefficient (𝜌 =  0.95). Figure 6 depicts this dendrogram. Some cryptocurrencies with common 

features formed identifiable clusters (link height < 0.5): (i) Bitcoin and its forks Litecoin and 

Bitcoin Cash,38, 39 along with the smart-contract enabled cryptocurrencies Ethereum and EOS,40 

(ii) NEO, Ontology and Qtum, all of which have proof-of-stake based consensus algorithms and 

were developed in Asia,41 (iii) Privacy-centered cryptocurrencies Dash and Zcash,42 and (iv) 

Ripple and Stellar, both of which have a common founder and are marketed as decentralized 

payment networks.43 On the other hand, some of the clustering is a consequence of investment 

strategies associated with market capitalization rather than fundamentals. This is clearly visible 

from the shorter distance between Bitcoin and Ethereum as compared to that of Bitcoin Cash 

despite the latter being a direct fork of Bitcoin. 44  Nevertheless, most of the links in the 

dendrogram were found to be consistent i.e., approximately the same height as the links below 

them (excluding any leaf node). This shows the absence of any major natural division in the 

data.45-47 

 

 

Fig. 6. IFC based dendrogram. The dendrogram/binary cluster tree was constructed using a 

distance metric Dij = 1 − IFCij  for each pair of cryptocurrencies 𝑖 and 𝑗  where IFC is the 

normalized total iso-frequency coupling between them. The height (cophenetic distance) of a 

link in this dendrogram represents the distance between the corresponding two clusters that 

contain any two cryptocurrencies. Visually identifiable clusters with link height < 0.5 are 

demarcated by red circles.  
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Finally, the risk reduction associated with diversification of portfolio between two 

cryptocurrencies (X, Y) as compared to a portfolio having only the larger market capital 

cryptocurrency (X) was assessed for each pair of cryptocurrencies. Figure 7A shows the total 

risk reduction achieved by portfolio diversification among every pair of cryptocurrencies for 

synchronous trading conditions (i.e., same trading frequency for both cryptocurrencies in the 

pair). Risk reduction is best achieved by pairing those smaller market capital cryptocurrencies 

(e.g., Theta network, Dogecoin and Hedera Hashgraph) which have low IFC with the larger 

market capital cryptocurrencies. Likewise, pairing of smaller market capital cryptocurrencies 

(e.g., Matic network and IOST) which have high IFC with the larger market capital 

cryptocurrencies can lead to increased risk. Overall, however, weak negative correlation was 

found between the mean total IFC and risk reduction for synchronous trading frequencies (𝜌 =
 -0.37, p < 0.001). Figures 7B and 7C show the total risk reduction achieved by portfolio 

diversification for asynchronous trading conditions (i.e., trading frequencies for the two 

cryptocurrencies in the pair are different). When the larger market capital cryptocurrency is 

traded at a higher frequency (Fig. 7B), risk reduction is achieved by portfolio diversification for 

almost all pairs of cryptocurrencies (mean ± std = 2.36 ± 1.74). A mild negative correlation was 

found between the amount of mean total risk reduction and the market capital rank of the larger 

market capital cryptocurrency, but it was not statistically significant (𝜌 = -0.23, p = 0.09). On 

the other hand, when the larger market capital cryptocurrency is traded at a lower frequency 

(Fig. 7C), the benefit of portfolio diversification is confined to high market capital 

cryptocurrencies like Bitcoin, Ethereum and Binance coin. For lower ranked cryptocurrencies, 

there is an increase in risk as in the case of Qtum, Ontology, Chilliz and Civic. There are, 

however, exceptions to this, as in the case of Ripple and Bitcoin cash, which, despite being high 

ranked, show increase in risk whereas Ravencoin, IOST and Matic Network show risk reduction 

despite being low ranked. Overall, there was a mild negative correlation was found between the 

amount of mean total risk reduction and the market capital rank of the larger market capital 

cryptocurrency, but it was not statistically significant (𝜌 = -0.22, p = 0.09).  
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Fig. 7. Risk reduction. 7A. Synchronous trading condition. Each pixel value corresponds to 

the total risk reduction achieved by diversification of portfolio between the corresponding pair 

of cryptocurrencies for all synchronous trading frequencies (1-24 Hz). Positive values indicate 

net reduction of risk while negative values indicate net increase of risk as compared to a 

portfolio containing only the cryptocurrency with the higher market capital in the pair.  
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Fig. 7B. Asynchronous trading condition with lower frequency of trading for the smaller 

market capital cryptocurrency. Pixel values mean the same as in 7A, except that the larger 

market capital cryptocurrency in the corresponding pair is traded at a lower frequency.  
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Fig. 7C. Asynchronous trading condition with higher frequency of trading for the smaller market 

capital cryptocurrency. Pixel values mean the same as in 7A, except that the larger market capital 

cryptocurrency in the corresponding pair is traded at a higher frequency. 

 

4. Discussion and Conclusion 

In this study, the pairwise relationship between the intra-day price changes of cryptocurrencies 

for 2020 were studied using a generalized coherence measure to quantify iso-frequency (IFC) 

and cross-frequency (CFC) coupling between them. The amount of total mean IFC as well as 

its mean phase was found to decrease with decrease in market capital size, showing that smaller 

market capital cryptocurrencies exhibit more independent price movements. Certain 

cryptocurrencies like Theta network show low mean total IFC despite having high market 

capital. Such assets may serve to act as a safe hedge when price changes of other large market 
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capital cryptocurrencies show herding behavior due to the development of a price bubble. 

Likewise, certain low market capital cryptocurrencies like Ravencoin that show high mean IFC 

with the large market capital cryptocurrencies can serve as a good investment alternative for 

those who wish to avoid the high transaction fees associated with top cryptocurrencies like 

Bitcoin or Ethereum. Furthermore, using hierarchical cluster analysis of the IFC values, certain 

functionally distinct clusters of cryptocurrencies were found based on their hashing algorithm, 

development history and proposed applications of use. This reflects common investment goals 

and perspectives for traders investing in closely related cryptocurrencies.  

Unlike the IFC, the mean total subharmonic CFC and phase was not found to have any 

relationship with the market capital size of the cryptocurrencies. Similarly, the mean total 

harmonic CFC had only a weak negative correlation with market capital size while the former’s 

phase had no correlation with the latter. This shows that for asynchronous trading frequencies, 

the cryptocurrency market is much more diversified and does not show herding behavior. From 

an ecosystem point of view, this lends credibility to the fact that market capital driven 

investment strategy lends less importance to asset fundamentals. Thus, at least some of the panic 

driven flash crashes that currently plague the cryptocurrency markets maybe be indicative of an 

inefficient market rather than inevitable correction of price bubbles.48 

The risk reduction associated with portfolio diversification between a small and a large 

market capital cryptocurrency was assessed for both synchronous and asynchronous trading 

frequencies of both. Diversifying portfolios to include smaller market capital cryptocurrencies 

which have price movements independent of the larger market capital cryptocurrency showed 

positive risk reduction for synchronous trading conditions. In asynchronous trading conditions, 

when the larger market capital cryptocurrency is traded at a relatively higher frequency, 

portfolio diversification to a smaller market capital cryptocurrency almost always leads to 

reduced risk irrespective of the degree of price coherency between them. In other words, it 

entails a strategy of short-term trading of well-established assets while ‘HODL’ing newly 

emerging ones. This, we believe, is a hallmark of an emergent market still in its ‘discovery’ 

phase wherein many new asset classes (each with its own new potential niche of use cases) are 

rising every day. 

When the larger market capital cryptocurrency is traded at a relatively lower frequency, 

however, portfolio diversification may lead to either reduced or increased risk depending upon 

the pair of cryptocurrencies being considered.  

There are a few limitations of this study. The data for this study was obtained from a single 

centralized exchange (Binance). However, considering its high 24-hour trading volume and 

reputation among the cryptocurrency trading community,49 it is unlikely that the overall results 

of this study will not be generalizable to other trading platforms. Due to consideration of the 

entire period of the year 2020, most of the decentralized finance-based tokens could not be 

included in this study. Hence, it may be interesting to investigate such tokens using the approach 

of this study as more data is generated in the future. This study was confined to investigation of 

the intra-day price changes only. For investigating longer periods, the statistical power of the 

generalized coherence analysis is limited by the availability of the number of epochs of data. 

For example, since cryptocurrency trading data is mostly available for the past 10 years or so, 

for investigation of intra-month price changes only around 120 epochs (12 months per year × 

10 years) are available so far. This might lead to a reduced power of analysis.50 Moreover, given 
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the poor survivability of most cryptocurrencies over such long periods of time, 51  such an 

analysis might not be meaningful at all. 
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