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Exploring the Mesoscopic Structure
of Bitcoin During its First Decade of Life
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Abstract. The public availability of the entire history of Bitcoin transactions opens up the
unprecedented possibility of studying this system at the desired level of detail. Our contribution
is intended to analyse the mesoscopic properties of the Bitcoin User Network (BUN) during the
first half of its history, i.e., across the years 2011-2018. What emerges from our analysis is that
the BUN is a core-periphery structure with a certain degree of “bow-tieness”, i.e., admitting
the presence of a Strongly-Connected Component (SCC), an IN-component (together with
some tendrils attached to it) and an OUT-component. Interestingly, the evolution of the BUN
structural organisation experiences fluctuations that seem to be correlated with the presence of
“bubbles”, i.e., periods of price surge and decline observed throughout its entire history. Our
results, thus, further confirm the interplay between structural quantities and price movements
reported by previous analyses.

1. Introduction

Introduced in 2008 by Satoshi Nakamoto,1 Bitcoin is the most widely adopted cryptocurrency.
Loosely speaking, it consists of a decentralised, peer-to-peer network to which users connect for
exchanging native tokens, i.e., the bitcoins. After having been validated by the miners—according
to the consensus rules that are part of the Bitcoin protocol—each transaction becomes part of a
replicated database, i.e., the Bitcoin blockchain.2, 3 The cryptographic protocols Bitcoin rests
upon aim at preventing the possibility for the same digital token to be spent more than once, in
absence of a central, third party that guarantees the validity of the transactions. Remarkably, the
transaction-verification mechanism allows the entire Bitcoin transaction history to be openly
accessible—a feature that, in turn, allows it to be analysable in the preferred representation.1, 4 Yet,
data accessibility comes at a cost: while the blockchain keeps track of each valid transaction ever
issued in Bitcoin tokens, it does not record any information about the identity of the issuers. Since
the inception of Bitcoin, many efforts have been thus devoted to de-anonymising transactions; in
particular, heuristics have been developed for the identification of common ownership that take
advantage of the way the Bitcoin protocol handles token exchanges.5–8
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Like many other systems shaped by human activities, economic and financial systems have
been analysed through the lenses of network science.9 Prominent results are represented by
the estimation of systemic risk in interbank networks,10, 11 and the topological characterisa-
tion of financial crises via the detection of early-warning signals, i.e., statistically significant
patterns emerging during their build-up phase.12 The topological properties of the networked
configurations induced by Bitcoin transactions have started to be investigated only recently: in
Javarone and Wright (2018), the authors check the small-worldness of the so-called Bitcoin User
Network;13 in Kondor et al. (2014) and Lin et al. (2020), the authors highlight the tendencies
towards wealth accumulation and structural centralisation, respectively characterising the so-
called Bitcoin Transaction Network and Bitcoin Lightning Network;14, 15 in Bovet et al. (2019),
the evolution of the local properties of four different representations of the network induced by
Bitcoin transactions (i.e., the Bitcoin User Network and the Bitcoin Address Network, at both the
daily and the weekly time scale) is explored and their relationships with price movements are
investigated.16

The aim of the present work is that of inspecting the interplay between the dynamics of the
Bitcoin price and that of the structural properties characterising the representation induced by
the exchanges between Bitcoin users (hereafter “BUN”): specifically, we study the emergence
of i) hubs and motifs,16, 17 whose statistical significance is assessed by employing properly
defined benchmarks,18 and ii) the mesoscopic structures known as “core-periphery” and “bow-tie”
structures.19–21 Interestingly, we observe co-movements of price and purely structural quantities
such as reciprocity and centrality. If, on the one hand, such evidence hints at the role played
by hubs in determining the level of systemic risk—by which we mean fragility towards price
fluctuations—characterising Bitcoin throughout its entire history, it on the other hand also reflects
the way Bitcoin’s “reputation” has evolved throughout the years, i.e., from a medium of exchange
to a speculative asset.

The rest of the paper is structured as follows: in Section 2 we describe the data and define
our network representation; in Section 3 we define the quantities of interest for our analysis and
present the main results; in Section 4 we discuss their implications.

2. Data

As highlighted in the Introduction, Bitcoin relies upon its blockchain: a decentralised, public
ledger that records the presence and amount of transactions between users. At an abstract level,
a transaction is nothing but a set of input and output addresses: the output addresses that are
said to be “unspent” (i.e., not yet recorded on the ledger as input addresses) can be claimed and,
therefore, spent only by the owner of the corresponding cryptographic key. This is the reason
why one often speaks of Bitcoin pseudonimity (rather than anonymity): someone observing the
blockchain from outside is capable of seeing all spent and unspent addresses without being able
to link them to their actual owner(s). A first technique to de-pseudonymise Bitcoin prescribes to
use off-chain information to link addresses to real-world entities (e.g., one can link an address
to a merchant by looking at the merchant’s Bitcoin payment channels); a second one (named
“heuristic clustering”) prescribes to rest upon the heuristics that were developed to spot out
common ownership of addresses. To follow on from this, we took advantage of the existing
literature on heuristic clustering to identify users—intended here as entities controlling multiple
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addresses (such as merchants, firms, exchanges). While this may be seen as a limitation of our
analysis, it perfectly fits with our interest in modelling the evolution of Bitcoin as a whole rather
than that of the single entities constituting it.

2.1. Bitcoin Address Network (BAN)—The BAN is the simplest representation that can be
constructed from the blockchain records: it is a binary, directed graph whose nodes represent
addresses. The direction of links is provided by the input-output relationships defining the
transactions recorded on the blockchain. More formally, the BAN is a directed network G =

(N,E) where any two nodes i, j ∈ N are connected via a directed edge from i to j—meaning
(i, j) ∈ E—if they participate to the same transaction with i being the input and j being the
output. The only degree of freedom is represented by the temporal window that can be chosen
for aggregating the transactions: we have opted for the weekly time scale, i.e., all transactions
are parsed, inputs and outputs are extracted and considered as nodes on a weekly basis.

2.2. Bitcoin User Network (BUN)—Since the same entity can control several addresses,
one can define a network of users whose nodes are clusters of addresses. Let us provide a quick
overview of the literature about heuristics stemming from the work of scholars like Harrigan and
Fretter (2016), Ron and Shamir (2013), Androulaki et al. 2013, and Tasca et al. (2018), as well
as a brief description of those heuristics that have been employed here.5, 6, 22, 23 The first one is
named multi-input heuristics and is based upon the assumption that two (or more) addresses that
are part of the same input are controlled by the same user—the reason being that the private keys
of all addresses must be accessible to the creator of a transaction, in order to generate it. The
second one is named change-address heuristics and is based upon the observation that transaction
outputs must be fully spent: the creator of a transaction, thus, usually also controls the output
address collecting the change. More specifically, we assume that if an output address is new
and the amount of bitcoins transferred to it is smaller than each input, then it must represent the
change, hence belonging to the creator of the transaction. Whenever the BUN is mentioned, we
refer to the representation obtained by clustering the nodes of the BAN according to a combination
of the two heuristics above: more formally, the BUN is a directed graph G = (N,E) where any
two nodes i, j ∈ N are connected via a directed edge from i to j—meaning (i, j) ∈ E—if at least
one transaction from one of the addresses defining i to one of the addresses defining j occurs
during the considered period. Since users can employ different wallets not necessarily linked by
a transaction, the BUN should not be regarded as a perfect representation of the actual network of
users but as an attempt at grouping addresses while minimising the presence of false positives.

Table 1. The four bubbles detected in Wheatley et al. (2019).24

Bubble Start End Days

1 25 May 2012 18 Aug 2012 84

2 03 Jan 2013 11 Apr 2013 98

3 07 Oct 2013 23 Nov 2013 47

4 31 Mar 2017 18 Dec 2017 155

2.3. Data on Price Bubbles—As the valuation of cryptocurrencies is an emerging field
of study, there is no consensus about the fundamental value of Bitcoin yet. As a consequence,
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understanding the meaning of a price bubble can be tricky. Here, we rely upon the methodology
to identify bubbles developed by Wheatly et al. (2019), employing a generalised version of
Metcalfe’s law to determine the fundamental value of Bitcoin and identifying four bubbles during
the period under consideration (see Table 1).24

3. Results

3.1. Analysis of Connected Components—Let us start by checking the connectedness of
our weekly BUNs. In the earliest phase in the life of Bitcoin, i.e., until the fall of 2010, our
BUNs are constituted by a large number of disconnected components, populated by few nodes
(see Figure 1a). Such a large number can be explained by considering that the vast majority of
nodes establish one-way transactions that bind vertices together only in a weak fashion. Besides,
while the relative size of the Largest Weakly Connected Component (LWCC) has remained stable
around 80% of the total number of nodes throughout the entire period under consideration, the
size of the Largest Strongly Connected Component (LSCC) has varied between 10% and 30% of
the total number of nodes: specifically, a plateau of two years (2014 and 2015) during which the
size of the LSCC has remained stable around 30% of the total number of nodes can be observed
(see Figure 1b). Lastly, the evolution of the ratio between the size of the LWCC/LSCC and the
size of the second LWCC/LSCC reveals the former to be two-to-three orders of magnitude larger
than the latter and comparable with the total size of the network (see Figure 1c)—a result further
confirming that our BUNs are characterised by no more than one Largest Connected Component
(LCC)—be it weakly or strongly connected.

3.2. Analysis of Assortativity—A network is said to be assortative when nodes with large
(small) degrees tend to establish connections with nodes with large (small) degrees; disassortativ-
ity, instead, indicates the tendency of nodes with large (small) degrees to establish connections
with nodes with small (large) degrees. Following Newman (2003) and Noldus and Van Mieghem
(2015),25, 26 the undirected assortativity coefficient is defined as

r =
∑ j,k jk(e jk−q jqk)

σ2
q

(1)

where the sum runs over the “excess degree” of a node—imagine entering a vertex following
a specific edge: then, its “excess degree” is the degree of the vertex minus the edge we have
followed. To be specific: qk ∝ pk+1 is the “excess degree” probability distribution (with p
being the plain degree distribution), σ2

q is its standard deviation and e jk is the fraction of edges
connecting nodes of degree j with nodes of degree k. Naturally, ∑ j e jk = qk. When considering
directed networks, instead, four variants of the aforementioned coefficient can be calculated, i.e.,
the ones accounting for the correlation between out-degrees and out-degrees, out-degrees and
in-degrees, in-degrees and out-degrees, and in-degrees and in-degrees. For example,

r(out,in) =
∑ j,k jk(e jk−qout

j qin
k )

σqout σqin
(2)

where e jk, now, represents the percentage of edges starting from nodes whose out-degree is j and
ending on nodes whose in-degree is k. Naturally, ∑ j e jk = qin

k . In general:
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(a) Number of disconnected components characterising our BUNs
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Fig. 1. Panel (a) depicts the evolution of the number of weakly (red line) and strongly (blue
line) disconnected components. Panel (b) depicts the evolution of the relative size of the
LWCC (red line) and of the SWCC (blue line). Panel (c) depicts the evolution of the ratio
between the size of the LCC and the size of the second LCC in the weak case (red line) and in
the strong case (blue line). All measures are computed on the BUNs constructed on a weekly
basis from 2011 to 2018.
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r(α,β ) =
∑ j,k jk(e jk−qα

j qβ

k )

σqα σqβ

(3)

where ei j is, now, the probability that a randomly chosen directed edge connects a vertex of
α-degree j with a vertex of β -degree k, where α,β ∈ {in,out}. Plotting the evolution of
the aforementioned coefficients reveals the weakly disassortative character of our BUNs (see
Figure 2). More specifically, since rout/in asymptotically vanishes, one can conclude that e jk is
increasingly close to qout

j qin
k , and it is analogously the same for the other indices.
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Fig. 2. Evolution of the four directed variants of Newman’s assortativity coefficient, revealing
the weakly disassortative character of our BUNs.

3.3. Bow-Tie Structure—Our BUNs are characterised by a mesoscopic kind of organisation
known as bow-tie structure. The definition of “bow-tieness” rests upon the concept of reachability:
we say that j is reachable from i if a path from i to j exists. A directed graph is said to be strongly
connected if any two nodes are mutually reachable. Mutual reachability is an equivalence relation
on the vertices of a graph, the equivalence classes being the strongly connected components of
the graph itself. Hence, the bow-tie decomposition of a graph consists of the following sets of
nodes:27

• Strongly Connected Component (SCC): Each node within SCC can be reached by any
other node within SCC;

• In-Component: Each node within IN can reach any other node within SCC, i.e.,

In≡ {i ∈V \SCC |SCC is reachable from i};

• Out-Component: Each node within OUT can be reached by any other node within SCC,
i.e.,

Out≡ {i ∈V \SCC | i is reachable from SCC};

• Tubes: Nodes not in the SCC from which you can reach both the In-Component and the
Out-Component, i.e.,

Tubes≡{i∈V \SCC∪ IN∪OUT | i is reachable from IN and OUT is reachable from i}
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• In-Tendrils: Sets of nodes that are reachable from the In-Component but do not reach the
Out-Component, i.e.,

In-Tendrils≡ {i ∈V \SCC | i is reachable from IN and OUT is not reachable from i};

• Out-Tendrils: Sets of nodes from which you can reach the Out-Component but that are
not reachable from the In-Component, i.e.,

Out-Tendrils≡ {i ∈V \SCC | i is not reachable from IN and OUT is reachable from i};

• Others: All nodes not belonging to any of the previous sets,

Other≡ {i ∈V \SCC ∪ IN ∪ OUT ∪ Tubes ∪ In-Tendrils ∪ Out-Tendrils}.

As Figure 3 confirms, an SCC starts emerging in 2012, “stabilizes” around mid-2013 and
persists until the end of 2015. Specifically, the SCC steadily rises during the biennium 2012-2013
and reaches ' 30% of the network size; afterwards, during the biennium 2014-2015, its size
remains quite constant; then, during the last two years covered by our data set (i.e., 2016 and
2017), it shrinks and the percentage of nodes belonging to it goes back to the pre-2012 values.
While during the biennium 2014-2015 the percentage of nodes constituting the SCC is larger
than the percentage of nodes belonging to the other components, this is no longer true since
2016: in fact, while both the SCC and the Out-Component shrink, the In-Component becomes
the dominant portion of the network.28
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Fig. 3. Evolution of the percentage of nodes belonging to each component of the bow-tie
structure characterising our BUNs.

3.4. Core-Periphery Structure—Let us, now, inspect the degree of “core-peripheryness”
characterising our BUNs. To this aim, we have run a recently-proposed method based on the
multivariate extension of the surprise score function (see also Appendix A).20, 29 More precisely,
applying the multivariate surprise to the partition induced by the bow-tie structure reveals
the latter to induce a statistically significant core-periphery structure as well,30 with the core
coinciding with the SCC and the periphery gathering any other node. As expected from the
results concerning the SCC, and confirmed by Figures 1 and 4, the periphery contains the vast
majority of nodes throughout the first half of the Bitcoin history.

In order to gain insight into the correlations between the evolution of purely topological
quantities and the Bitcoin price, let us plot the trend of the t-score defined as
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tX =
Xt−X

sX
(4)

for a generic quantity X evaluated at time t, where the sample average X = ∑t Xt/T and the
sample standard deviation sX =

√
X2−X2 have been computed over the set of values covering

six and half months before time t.31 As Figure 4 shows, the evolution of the t-score for the
number of core and periphery nodes reveals the presence of peaks in correspondence with the
first three bubbles (identified by the shaded areas), thus indicating the existence of periods during
which the price and the structural quantities of interest co-evolve. In particular, the number of
nodes within the core and the periphery rises significantly in correspondence with the first three
bubbles with respect to the temporal interval chosen as a benchmark, while the same quantities
are characterised by a steep decrease during the periods between the bubbles.
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Fig. 4. Evolution of the t-score of the percentage of nodes in the core, as defined by Equation
4. The sample average and standard deviation have been computed over the set of empirical
values covering six and half months before time t. Peaks are clearly visible in correspondence
of the shaded areas identifying the bubbles, thus indicating the existence of periods during
which the price and the structural quantities of interest co-evolve. Colours represent the
log-returns of the Bitcoin price in USD, expressed as percentages and calculated over a rolling
window of four weeks.

3.5. Dyadic Motifs—Let us now consider the quantities known as dyadic motifs and the
capturing of information concerning the patterns involving pairs of nodes.12, 18 Three different
patterns can be defined, i.e.,

• a reciprocated dyad, indicating that both the connection i→ j and the connection j→ i
exist. The total number of reciprocated dyads is quantified by calculating

L↔ =
N

∑
i=1

∑
j(6=i)

ai ja ji; (5)

• a non-reciprocated dyad, indicating that either the connection i→ j or the connection
j→ i exists. The total number of non-reciprocated dyads is quantified by calculating

L→ =
N

∑
i=1

∑
j(6=i)

ai j(1−a ji); (6)
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• an empty dyad, indicating that neither the connection i→ j nor the connection j→ i exist.
The total number of empty dyads is quantified by calculating

L= =
N

∑
i=1

∑
j(6=i)

(1−ai j)(1−a ji). (7)
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Fig. 5. Evolution of the z-score of the number of empty (top panel), non-reciprocated (middle
panel) and reciprocated (bottom panel) dyads, computed over the ensemble induced by the
DBCM. Dashed gray lines signal the values z =±2 and z =±3. The large positive values of
our z-scores point out that observing links pointing in opposite directions is very unlikely—
understandable by considering the level of sparseness of our BUNs; interestingly, events like
these are more likely to occur in correspondence of the shaded areas identifying the bubbles,
i.e., periods of price surge. Colours represent the log-returns of the Bitcoin price in USD,
expressed as percentages and calculated over a rolling window of four weeks.
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We may study the emergence of dyadic motifs by adopting the following approach: instead
of calculating the t-score to spot “temporal outliers”, i.e., values that are statistically significant
with respect to a series of precedent values, let us start by considering the z-score defined as

zX =
X∗−〈X〉

σX
. (8)

We then quantify the extent to which the empirical value of the quantity X∗ ≡ X(A∗), evaluated
on the observed network A∗, differs from its expectation, 〈X〉, evaluated by employing a specific
benchmark; naturally, σX represents the standard deviation of the quantity X , evaluated on the
ensemble induced by the chosen benchmark. The z-score admits a clear, statistical interpretation:
values satisfying |zX |> 3 signal that the empirical value is significantly over- or under-represented
in the data, hence not compatible with the explanation solely provided by the constraints defining
the chosen benchmark, at the 1% level of statistical significance; on the other hand, values satis-
fying |zX | ≤ 3 signal that the empirical value is compatible with the explanation solely provided
by the constraints defining the chosen benchmark, at the 1% level of statistical significance.

Hereby, we will employ the Exponential Random Graph Model named the Directed Binary
Configuration Model (DBCM) to analyse the occurrence of the dyadic motifs.12, 32 The results
are shown in Figure 5. The large, positive values of the z-scores for the empty and reciprocated
dyads point out that our BUNs are much sparser and much more reciprocated than expected
under a benchmark solely constraining the out- and in-degree sequences. Besides, we observe
that reciprocated and non-reciprocated dyads have opposite trends as the number of reciprocated
(non-reciprocated) dyads increases (decreases) during the growth of the (first three) bubbles: in
other words, two previously single links become coupled, hence destroying two, non-reciprocated
dyads and creating both an empty dyad and a reciprocated one (see also Appendix B).

3.6. Centrality and Centralisation—Moving to the study of the mesoscale structure, we
have computed three different centrality measures on the undirected version of our BUNs, i.e.,
the degree centrality, the closeness centrality and the betweenness centrality.33, 34 The degree
centrality of node i is proportional to its degree; the closeness centrality of node i is proportional
to the inverse of the sum of the distances separating i from all the other nodes; the betweenness
centrality of node i is proportional to the fraction of shortest paths crossing i. To summarise the
information provided by any vector of centrality measures, hereby indicated with {ci}N

i=1, let
us compute the two, aggregated quantities known as the Gini coefficient and the centralisation
index.35–37 The Gini coefficient quantifies the unevenness of the distribution of a certain quantity
such as the income.38 It is defined as

Gc =
∑

N
i=1 ∑ j |ci− c j|
2N ∑

N
i=1 ci

(9)

and ranges between 0 and 1. While a Gini coefficient of 0 indicates perfect evenness, a Gini
coefficient of 1 indicates perfect unevenness.39 The trends in Figure 6 return the picture of an
overall stationary system, suggesting the presence of a set of well-connected nodes, seemingly
crossed by a large percentage of paths, that are also well inter-connected. The small values of the
Gini coefficient induced by the closeness centrality can, in fact, be explained by the presence of
vertices whose “position” ensures the vast majority of nodes to be reachable quite easily. The
decrease of all Gini coefficients after 10 April 2013 is probably due to the Mt. Gox downward
spiral, which started in the same year and ended with its bankruptcy in 2014.40 Since then, Gk
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Fig. 6. Evolution of the Gini coefficient (in red) and centralisation index (in blue) for the degree,
closeness and betweenness centrality measures. These trends return the picture of an overall
stationary system, confirming the presence of a set of well-connected and interconnected nodes,
crossed by a large percentage of paths. Shaded areas identify the bubbles. Co-movements
between the price and the Gini coefficient of each centrality measure can be appreciated:
particularly relevant is the spike observed on the 10th of April 2013, i.e., the day Mt. Gox
suspended trading, thus triggering the burst of the price bubble, here indicated with a vertical,
dashed line. Three spikes can be identified in 2011 as well: they are probably related to the
small size of the network at the time and the instability caused by the Mt. Gox hacking in the
summer of 2011.
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has remained stable around the value of 0.5—which is (still) compatible with a very centralised
configuration. The Gini coefficients induced by the closeness and betweenness centralities are
peaked in correspondence with the third bubble. Centralisation indices, instead, are intended to
quantify the “distance” of a given configuration from the most unbalanced one. In mathematical
terms, a generic centralisation index reads

Cc =
∑

N
i=1(c

∗− ci)

max
{

∑
N
i=1(c∗− ci)

} (10)

where c∗ = max{ci}N
i=1 represents the maximum value of the chosen centrality measured on

the network under consideration and the denominator is calculated on the graph providing the
maximum attainable value of the quantity ∑

N
i=1(c

∗−ci) (see also Appendix C). For what concerns
the degree, closeness and betweenness centrality, such a benchmark can be proven to be nothing
else than a star graph with the same number of nodes of the network under inspection. More
explicitly, in the case of the degree centrality, the centralisation index Ck reads

Ck =
∑

N
i=1(k

∗− ki)

(N−1)(N−2)
(11)

and a value Ck = 1 would indicate that Bitcoin has become a star graph (at a certain point during
its history). As Figure 6 reveals, the degree-induced centralisation has quickly stabilised around
“small” values: contrarily to what the degree-induced Gini coefficient seems to suggest, Bitcoin
is not evolving towards a star-like structure having a unique, central node participating to all
transactions, but towards a structure where several hubs co-exist (see also our toy model in
Appendix C). In other words, the (unrealistic) picture of a star-like structure can be replaced
by the (more realistic) one depicting several locally star-like structures, their centers being
vertices with a large number of connections, crossed by a large percentage of paths and well
inter-connected (see also Figure 7). As for the Gini coefficients, bubbles seem to have had some
sort of impact on the evolution of the centralisation indices. From a merely economic perspective,
the presence of hubs increases the fragility of the Bitcoin ecosystem, making it more prone to
large-scale losses and sudden price crashes in the event of failures.

3.7. Small-Worldness—Finally, let us ask ourselves if Bitcoin satisfies the small-word
property. To this aim, we have compared i) the evolution of the average path length

APL =
∑

N
i=1 ∑ j(>i) di j

N(N−1)/2
(12)

with the one predicted by the Erdös-Rényi Model (ERM), i.e., 〈APL〉ERM = lnN/ lnk where
k = (N−1)p = 2L/N, and ii) the evolution of the average clustering coefficient (ACC):

ACC =
∑

N
i=1Ci

N
, (13)

where Ci = ∑ j(6=i)∑k(6=i, j) ai ja jkaki/ki(ki− 1), with the one predicted by the same model, i.e.,
〈ACC〉ERM = p = 2L/N(N−1). Computational constraints have forced us to limit our analysis
to the giant connected component, during the first half of the period under consideration (i.e.,
until 2014). The results are displayed in Figure 8: since ln(lnN)< APL < lnN ∝ 〈APL〉ERM and
ACC > 〈ACC〉ERM across the entire period, Bitcoin can be claimed to be small-world.
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Fig. 7. Snapshots of Bitcoin BUN corresponding to 14 August 2010 (left) and 14 April 2013
(right). The two plots depict the ego network of the node having the largest degree.
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Fig. 8. Evolution of the average path length and of the average clustering coefficient and their
comparison with the corresponding values expected under the Erdös-Rényi Model (ERM):
since ln(lnN) < APL < lnN ∝ 〈APL〉ERM and ACC > 〈ACC〉ERM across the entire period,
Bitcoin can be claimed to be small-world.
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More in general, our BUNs tend to be poorly clustered, i.e., it is unlikely to observe two
neighbours of a node that are also connected with each other. Still, the empirical value of the
ACC is steadily one order of magnitude larger than the expected value of the ACC under the
ERM, an evidence indicating that Bitcoin users tend to create many more triangles than those
expected under a homogeneous benchmark induced by the link density.

4. Conclusions

In the present work, we have analysed the Bitcoin structural properties at the mesoscale and
inspected their relationships with the price bubbles observed throughout the entire Bitcoin history.
Features like the abundance of dyadic motifs and the values of the Gini coefficients have been
observed to show significant variations in correspondence with (at least some of) the bubbles.41

Some of the most representative examples are provided by the results concerning the analysis
of centrality: during the third bubble, each trend is characterised by a peak probably due to the
prominent role played by agents acting as liquidity providers, and likely also due to the exchange
markets serving as structural hubs.

Although Bitcoin bubbles are difficult to forecast, our results suggest how to reduce the
likelihood of them happening—or, at least, how to mitigate their impact: policies should be
introduced to reduce the “importance” of hubs in the system. If only a few hubs account for
most of the traffic in the network, in fact, the failure of any of them, at any point in time, has
the potential to trigger the crash of a huge portion of the network itself. This is exactly what
happened on 10 April 2013 when Mt. Gox, the major exchange market at the time, broke under
the high trading volume.
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Appendix A: Detecting Mesoscale Structures by Surprise

Originally proposed to detect communities,44–46 the surprise reads

S =
min{L,V•}

∑
l≥l∗•

(V•
l

)( V◦
L−l

)(V
L

) (14)

where V is the volume of the network (coinciding with the total number of node pairs, i.e.,
V = N(N−1) in the directed case), V• is the total number of intra-cluster pairs (i.e., the number
of node pairs within the individuated communities), and L is the total number of links and l∗

is the observed number of intra-cluster links (i.e., the number of links within the individuated
communities). In other words, S is the p-value of a hypergeometric distribution, aimed at
testing the statistical significance of a given partition. Such a distribution, in fact, describes the
probability of observing l successes in L draws (without replacement) from a finite population
of size V that contains exactly V• objects with the desired feature (in our case, being an intra-
cluster pair), each draw being interpreted either as a “success” or as a “failure”: the smaller such
a probability, the “better” the individuated partition—in other words, the more surprising its
observation.

When carrying out a community detection exercise, links are understood as belonging to
two different categories, i.e., the ones within the clusters and the ones between the clusters. The
surprise-based formalism, however, can be extended to detect bimodular structures, a terminology
intended to describe either bipartite or core-periphery structures. In this case, three different
“species” of links are needed (e.g., the core, the periphery and the core-periphery ones): for this
reason, we need to consider the multinomial version of the surprise,20 reading

S‖ = ∑
i≥l∗•

∑
j≥l∗◦

(V•
i

)(V◦
j

)(V−(V•+V◦)
L−(i+ j)

)(V
L

) . (15)

From a technical point of view, S‖ is the p-value of a multivariate hypergeometric distribution,
describing the probability of i+ j successes in L draws (without replacement) from a finite
population of size V that contains exactly V• objects with a first, specific feature and V◦ objects
with a second, specific feature, each draw being either a “success” or a “failure”. This is analogous
to the univariate case, i+ j ∈ [l∗•+ l∗◦ ,min{L,V•+V◦]. According to the interpretation proposed in
de Jeude et al. (2019), revealing the core-periphery structure by minimising the surprise amounts
at individuating the partition that is least likely to be explained by invoking the Erdös-Rényi
Model (ERM) than by invoking the Stochastic Block Model (SBM).20 This, in turn, amounts
to individuating subgraphs with very different link densities, a piece of evidence that cannot be
explained by a model defined by just one global parameter (such as the ERM).
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Appendix B: Evolution of Dyadic Motifs
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Fig. 9. Evolution of the z-score of the number of empty (top panel), non-reciprocated (middle
panel) and reciprocated (bottom panel) dyads, computed over the ensemble induced by the
DBCM, across the years 2012-2014. Dashed, gray lines signal the values z =±2 and z =±3.
As already noticed in the main text, large, positive values for the z-score of the number of
links pointing in opposite directions are more likely to occur in correspondence of the shaded
areas identifying the bubbles, i.e., periods of price surge. Colours represent the log-returns of
the Bitcoin price in USD, expressed as percentages and calculated over a rolling window of
four weeks.
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Appendix C: Centralisation Indices

C.1. Non-Normalised Centrality Measures—The degree-induced centralisation index reads

Ck =
∑

N
i=1(k

∗− ki)

(N−1)(N−2)
(16)

where ki is the non-normalised degree centrality of node i. Notice that a star graph with N nodes
has N− 1 leaves linked to the central hub: hence, kh = k∗ = N− 1, kl = 1 and the numerator
reduces to N−1 addenda each one reading N−1−1 = N−2.15, 37, 47

The closeness-induced centralisation index reads

Cc =
∑

N
i=1(c

∗− ci)

(N−2)/(2N−3)
(17)

where ci is the non-normalised closeness centrality of node i. Notice that a star graph with N nodes
has N−1 leaves linked to the central hub: hence, ch = c∗ = 1/(N−1), cl = 1/(1+2(N−2)) =
1/(2N−3) and the numerator reduces to N−1 addenda each one reading (N−2)/(N−1)(2N−
3).15, 37, 47

The betweenness-induced centralisation index reads

Cb =
∑

N
i=1(b

∗−bi)

(N−1)2(N−2)/2
(18)

where bi is the non-normalised betweenness centrality of node i. Notice that a star graph with N
nodes has N−1 leaves linked to the central hub: hence, bh = b∗ = (N−1)(N−2)/2, bl = 0 and
the numerator reduces to N−1 addenda each one reading (N−1)(N−2)/2.15, 37, 47

C.2. Normalised Centrality Measures—The degree-induced centralisation index reads

Ck =
∑

N
i=1(k

∗− ki)

N−2
(19)

where ki is the normalised degree centrality of node i. Notice that a star graph with N nodes has
N−1 leaves linked to the central hub: hence, kh = k∗ = 1, kl = 1/(N−1) and the numerator
reduces to N−1 addenda each one reading 1−1/(N−1) = (N−2)/(N−1).15, 37, 47

The closeness-induced centralisation index reads

Cc =
∑

N
i=1(c

∗− ci)

(N−1)(N−2)/(2N−3)
(20)

where ci is the normalised closeness centrality of node i. Notice that a star graph with N
nodes has N − 1 leaves linked to the central hub: hence, ch = c∗ = 1, cl = (N − 1)/(1 +

2(N − 2)) = (N − 1)/(2N − 3) and the numerator reduces to N − 1 addenda each one read-
ing (N−2)/(2N−3).15, 37, 47

The betweenness-induced centralisation index reads

Cb =
∑

N
i=1(b

∗−bi)

N−1
(21)
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where bi is the normalised betweenness centrality of node i. Notice that a star graph with N
nodes has N−1 leaves linked to the central hub: hence, bh = b∗ = 1, bl = 0 and the numerator
reduces to N−1 addenda each one reading 1.15, 37

C.3. The Bitcoin Topology: A Toy Model—A toy model can help reconciling the two, apparently
contradictory, results provided by the Gini coefficient and the degree-induced centralisation.
Imagine Nh hubs connected between them and Nl leaves connected to each of them; hence, the
total number of nodes reads N = Nh(Nl +1), the degree of each hub reads kh = (Nh−1)+Nl ,
the degree of each leave reads kl = 1 and

Gk =
∑

N
i=1 ∑

N
j |ki− k j|

2N ∑
N
i=1 ki

=
2N2

h Nl[(Nh−1)+Nl−1]
2Nh(Nl +1) [Nh(Nh−1)+2NhNl]

=
N2

h Nl[(Nh−1)+Nl−1]
Nh(Nl +1) [Nh(Nh−1)+2NhNl]

=
Nl(Nh +Nl−2)

(Nl +1) [(Nh−1)+2Nl]
' Nh +Nl

Nh +2Nl
; (22)

now, Gk ' 2/3 if Nl = Nh, i.e., if each hub is linked to a number of leaves that matches the total
number of hubs and Gk→ 1/2 as Nl →+∞ (i.e., if the number of leaves per hub becomes “very
large”). In this setting, we have that

Ck =
∑

N
i=1(k

∗− ki)

(N−1)(N−2)
=

NhNl[(Nh−1)+Nl−1]
[Nh(Nl +1)−1][Nh(Nl +1)−2]

' Nh +Nl

NhNl
(23)

which amounts at Ck ' 0.02 if we set Nh = Nl = 100. Hence, we can recover core-periphery
structures for which a large Gini coefficient co-exists with a small degree-centralisation by
opportunely tuning the parameters of our toy model.
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