
ISSN 2379-5980 (online)
DOI 10.5195/LEDGER.2025.402

An Invitational Research Article from the ChainScience 2024 Conference

Investigating Similarities Across
Decentralized Finance (DeFi) Services

Junliang Luo,∗Stefan Kitzler,† Pietro Saggese‡

Abstract. We explore the adoption of graph representation learning (GRL) algorithms to
investigate similarities across services offered by Decentralized Finance (DeFi) protocols.
Following existing literature, we use Ethereum transaction data to identify the DeFi building
blocks. These are sets of protocol-specific smart contracts that, similarly to “financial LEGO
bricks”, are utilized in combination within single transactions and encapsulate the logic to
conduct specific financial services such as swapping or lending cryptoassets. We propose a
method to categorize these blocks into clusters based on their smart contract attributes and the
graph structure of their smart contract calls. We employ GRL to create embedding vectors
from building blocks and agglomerative models for clustering them. To evaluate whether they
are effectively grouped in clusters of similar functionalities, we associate them with eight
financial functionality categories and use this information as the target label. We find that
in the best-case scenario purity reaches .888. We use additional information to associate the
building blocks with protocol-specific target labels, obtaining comparable purity (.864) but
higher V-Measure (.571) and discuss plausible explanations for this difference. In summary,
this method helps categorize existing financial products offered by DeFi protocols, and can
effectively automatize the detection of similar DeFi services, especially within protocols.

1. Introduction

Decentralized Finance (DeFi) refers to a novel financial paradigm that leverages self-executing
code deployed on top of Distributed Ledger Technologies (DLTs) known as smart contracts to
provide financial functionalities within a decentralized framework. Thereby, it eliminates the
need for intermediary entities like centralized financial institutions for transaction settlement.

The DeFi ecosystem is a thriving environment for financial innovation and the conception of
new financial products.1 Automated market-making, for instance, is a mechanism that facilitates
the decentralized trading of cryptoassets by replacing order books.2 The interoperability of
smart contracts enables the creation of “DeFi compositions”, where financial services of several
DeFi protocols are combined to offer novel, complex and deeply nested financial products.3 The
DeFi landscape is indeed evolving rapidly: permissionless DLTs are censorship-resistant and

∗ J. Luo (junliang.luo@mail.mcgill.ca) is a PhD candidate in the School of Computer Science at McGill University, Montréal, Canada.
† S. Kitzler (kitzler@csh.ac.at) is a PhD candidate in the Complexity Science Hub, Vienna, Austria, and Junior Scientist at AIT

Austrian Institute of Technology, Austria.
‡ P. Saggese (pietro.saggese@imtlucca.it) is an Assistant Professor at IMT School for Advanced Studies, Lucca, Italy.

LEDGER VOL 10 (2025) 1-17

their open-source design enables everyone to create new financial products and protocols. To
date, it is hard to keep track of all existing DeFi projects and the financial services they offer.
Notwithstanding this, such services often overlap in scope and purpose: most of them enable
the lending and trading of cryptoassets, or devise yield-bearing strategies to reward liquidity
provision. When protocol developers deploy newer versions of their projects, for interoperability
purposes it is often essential that the newly deployed smart contracts are compatible with previous
versions. It is also well known that code reuse is a practice conducted by protocol developers;
as an example, the protocol SushiSwap is a fork of Uniswap.4 Therefore, it is not uncommon
that the implemented functionalities are similar if not identical across protocols. More generally,
DeFi services reproduce in a decentralized context the functional logic of established “traditional
finance counterparts”. One could expect that the logic of such functions shares some fundamental
characteristics. In other words, it is likely that different implementations of similar financial
services share similar attributes and structure.

Recent research has disentangled the different financial services produced by DeFi protocols
and has identified fundamental sets of protocol-specific smart contracts that, in combination,
encapsulate the logic to conduct specific financial functionalities, such as swapping cryptoassets,
or lending and borrowing them, calling them the building blocks of DeFi.5 These building
blocks are defined univocally by their shape and structure, which is modelled as a tree-like
structure of interacting smart contracts. However, previous research did not investigate in detail
the similarities and differences across building blocks, and to the best of our knowledge, no other
studies have investigated in depth the entire space of such DeFi services.6

For the aforementioned reasons, we believe it is important to conduct a more detailed analysis
of the various financial functions present within the DeFi ecosystem. On the one side, the growth
without oversight of the DeFi ecosystem serves as a motivation for studies exploring solutions
to automate the categorization of DeFi services; on the other side, evidence of similitudes on a
technical level and of code reuse motivates studies that aim at investigating such similarities.

In this paper, we exploit machine learning algorithms to investigate how well it is possible to
categorize building blocks in clusters of similar financial functionalities, based on their graph
structure and attributes. We also aim to explore whether the financial functionalities of building
blocks can be identified by their location within an embedding space or their proximity to certain
other building blocks. Finally, we aim to understand the specific common design patterns that
lead to the formation of these clusters and analyze imperfect classifications within them.

To answer these questions, we first replicate existing methods to obtain a set of building
blocks encapsulating the main financial functions of DeFi.5 To assess the similarity between these
building blocks, we produce a similarity embedding space by applying graph-level representation
learning and then exploit agglomerative clustering models on building blocks. We obtain four
different specifications by associating various features to the nodes that compose the building
blocks. Next, to evaluate how financial functionalities are grouped within such space, and to
analyze whether distinct clusters represent particular financial operations, we gather additional
information indicating the financial functionality category or the protocol they are associated with,
and use it as the target label to compute a number of metrics such as homogeneity, completeness,
V-Measure, and purity.

When evaluating the results using the “financial functionality category” label, we find that the
outcomes yielded the highest value among all specifications for purity with .888, but a relatively

2
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2025.402

LEDGER VOL 10 (2025) 1-17

low V-Measure (.239). When evaluating the results using the “protocol” label, we find that
the values for purity are comparable (.864 for the best-performing specification), and higher
V-Measure (.571). To explain the difference in performance, we investigate more closely the
common patterns within protocol-specific building blocks and look for plausible explanations.
Finally, we identify protocol-specific patterns, that are re-used across them in different financial
functionalities, which likely explain higher values for the clustering evaluated on the protocol
target labels, compared to the financial functionalities.

The paper is structured as follows: Section 2 describes the concepts of building blocks, DeFi
compositions, and the related literature; Section 3 describes the data and the methodology, while
Section 4 shows results; finally, Section 5 reports discussion and concluding remarks. Data and
code are available at: https://github.com/JunLLuo/DeFi-similarity.

2. Background

2.1. Decentralized Finance & DeFi Protocols—DeFi aims for open access for its users and
provides a decentralized ecosystem that does not need intermediaries such as financial institutions
to settle transactions. To date, Ethereum is the main blockchain for DeFi in terms of Total Value
Locked (TVL).7 In contrast to UTXO-based cryptocurrencies, such as Bitcoin, the Ethereum
Virtual Machine (EVM) enables the use of Contract Accounts (CAs), also known as smart
contracts, i.e., software programs deployed on a blockchain. In contrast to Externally Owned
Accounts (EOAs), CAs contain program code and, once deployed on the blockchain in question,
methods (functions) can be called and the implemented logic will then be executed and computed.
The most popular implementation of CAs is cryptoassets (later also just assets), representing
real-world assets or rights on the blockchain. Prominent examples are stablecoins, such as
Tether or USDC, whose value is pegged to the US dollar. DeFi can be thought of as an entire
ecosystem of financial services for cryptoassets. DeFi protocols are implemented through CAs
on the blockchain and provide financial functionalities, such as decentralized exchanges (DEX)
or lending, to the end users. Many services automate their continuous code launch, creating
factory-deployed (FD) contracts. Previous literature has extensively studied DeFi protocols,
especially DEXs (Xu et al. (2023), Lehar & Parlour (2021), Heimbach et al. (2022))2, 8, 9 using
Automated Market Makers (AMM) (Fritsch et al. (2022),10 Lending (Heimbach et al. (2023),
Sun (2023), Xu & Vadgama (2022))11–13 or Derivatives (Xiong et al. (2023)14 protocols.

2.2. DeFi Compositions—Ethereum’s flexibility allows CAs to be called by other CAs,
therefore enabling smart contract interoperability. Consequently, entire DeFi protocols can
leverage financial functionalities offered by other protocols and stack them similarly to “finan-
cial LEGO bricks”.15 Such a combination of multiple DeFi protocols, also known as DeFi
compositions, might be beneficial for automating or providing more sophisticated actions. For
instance, an aggregator protocol Pi can be used to determine the DEX protocol Pj with the best
available price and execute the swap from Asset A to Asset B within the same, single transaction.
Intuitively, this is a DeFi composition between Pi and Pj. Following a more thorough definition, a
DeFi composition within a single transaction is a coordinated combination of multiple Contract
Accounts, associated with different DeFi protocols, where the CAs interact directly, or are linked
by a common asset across the same transaction, to execute financial operations.3

3
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2025.402

https://github.com/JunLLuo/DeFi-similarity

LEDGER VOL 10 (2025) 1-17

Fig. 1. Building blocks examples from Uniswap and 1inch. Nodes represent account addresses
and links are the calls of other accounts methods. Tree-structured transactions reveal the
nested structure of composed DeFi services.

2.3. Conceptualization of Building Blocks—Whilst interoperability increases the potential-
ities of DeFi, it also adds a level of complexity to the system. Previous research investigated
DeFi transactions in Ethereum in order to identify DeFi compositions and disentangle them, by
proposing an algorithm that detects sets of smart contracts that, in combination, encode the logic
of fundamental financial functions, also called building blocks.5

Building blocks are functional units of DeFi protocols that can be derived from the call
structure of single transactions and are constructed as follows. Beginning with an EOA as the
initiator of the transaction, the call of a CA can lead to subsequent internal transactions, i.e. calls
of other CAs’ methods, and ultimately culminate in a cascading, tree-like transaction structure.
Building blocks can be extracted as sub-trees, where the root node (i.e., the top node of the tree
structure) is a protocol-specific CA with no incoming but at least one outgoing link. Furthermore,
a building block may also encompass additional sub-trees, essentially forming nested structures
of blocks. Figure 1 provides graphic support to understand this concept. It represents two
frequently appearing building blocks from the popular DEX Uniswap (A) and one from the
aggregator protocol 1inch (B). Nodes represent account addresses and links represent the calls of
CAs’ methods. It illustrates the tree-like structure of building blocks and reveals the atomic swap
block of Uniswap (A) to exchange assets. The more complex 1inch building block (B) derives
the best price across DEXs (when the method unoswap is called) and then executes two swaps by
leveraging both building block (A) and an equivalent SushiSwap building block. Overall 1inch is
creating a DeFi composition, as intuitively described in Section 2.2.

2.4. Related Work—Compositions of DeFi protocols increase the ecosystem complexity,
which makes systemic risk even harder to assess.16–20 Early works were conducted for decompos-
ing other elements of DeFi but not across protocols. Moin et al. (2019) decomposed the design of
stablecoins into various component design elements and discussed the strengths and drawbacks.21

Tolmach et al. (2021) specified systems compositions in automated market makers (AMMs)
decentralized exchanges.22 Von Wachter et al. (2021) described the “composed” derivatives of
assets, in other contexts also known as “wrapped” tokens, and showed that the complexity of

4
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2025.402

LEDGER VOL 10 (2025) 1-17

wrapping operations has been peaking in the third quarter of 2020, a period often referred to as
“DeFi Summer”.23 Existing online tools, such as DeFiLlama, provide categories of protocols, but
do not necessarily distinguish among financial functionalities offered.

Other related studies are various machine learning-based analyses built upon extracting
features of blockchain transactions to reveal the insights of the transactions in the blockchain
blocks. Methods were proposed to process the input transaction graphs to construct desired
sub-structure graphs or newly derived graphs for further analysis. Weber et al. (2019) explored
the potential of Graph Convolutional Networks (GCN) for anti-money laundering (AML) in
Bitcoin, contributing a publicly available labelled dataset of Bitcoin transactions for financial
forensics.24 Li et al. (2022) introduced a graph neural network-based model that incorporates
temporal transaction data for the identification of phishing scams on the Ethereum network.25

Pocher et al. (2023) demonstrated that employing Graph Convolutional Networks (GCN) and
Graph Attention Networks (GAT) for modelling blockchain transactions as complex networks
enhances the detection of AML and Countering the Financing of Terrorism (CFT) anomalies.26

Han et al. (2023) developed a multi-layer graph neural network-based model for temporal
transaction anomaly detection within Ethereum’s multi-token transaction networks.27 These
studies leverage graph learning for transaction pattern recognition; yet, they lack a specific focus
on smart contract interoperability and structural similarities across DeFi protocols, which our
work aims to investigate.

3. Building Block Embedding

This section describes the dataset and the methodology devised to produce embeddings for DeFi
building blocks. To uncover functional similarities and recurring interaction patterns, we first
produce an embedding space where each building block is mapped to a high-dimensional vector
by a graph representation algorithm; in this procedure, we assign various features to each node
(i.e., smart contract) of each building block. Similarity searches are conducted based on their
distance within the space. We utilize two different target labels for evaluating the performance of
our approaches in grouping DeFi building blocks into clusters based on their similarity.

3.1. Dataset and Sources Description—Following the approach introduced in Kitzler et al.,5

building blocks are extracted utilizing all Ethereum transactions involving 23 DeFi protocols and
their contracts from January 1, 2021 (block 11,565,019) to August 5, 2021 (block 12,964,999).28

The algorithm extracts the building blocks by mapping the transactions into edge-induced
subtrees, subsequently hashed based on a combination of their execution order, target nodes’
outdegrees, and associated method. Each building block in the dataset has fields including the
executed method’s name, subtraces that outline the tree structure and participating addresses of
the transactions within a building block, and a count that reflects the frequency of the building
block’s occurrence. The dataset we analyze consists of the top 10,000 building blocks identified
using the building block extraction algorithm and ranked by count.

3.2. Methods of Producing Embedding—Given the building block tree-shaped structure,
and since each node represents a smart contract with distinct features, the data are well-suited to
apply graph representation learning to obtain graph-level embedding.6 The method we employ,
graph2vec,29 is based on the Weisfeiler-Lehman (WL) method and was subsequently applied
in performing graph isomorphism testing.30, 31 The graph2vec algorithms leveraging the WL

5
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2025.402

LEDGER VOL 10 (2025) 1-17

subtree kernel measure graph similarity quantitatively based on the commonality of their subgraph
components, asserting that graphs share a higher number of common subgraph components and
exhibit higher similarity. We apply graph2vec to generate a graph-level embedding space,
yielding a singular vector for each building block. The embedding vectors abstract building block
similarity relationships into a generalized representation, offering interpretability and predictive
utility when used as input for models like classifiers or clustering algorithms.

3.3. Node Features—In graph2vec, the differentiation of the building block node features
directly influences the characterization of the subgraphs, consequently affecting how closely
graphs are positioned in the embedding space; graphs containing similar node features in addition
to similar subgraphs are placed closer to each other. With graph2vec, we can provide node
features or leave the field empty during the embedding vector generation process. We utilize
various node features, detailed below, to investigate how they affect subgraph similarity in the
embedding space.

3.3.1. None—For the baseline setting, no features are assigned to nodes. In this case,
graph2vec will assign the node degree by default. The examination of the embeddings is based
only on the building block graph structure without the influence of node-specific information.

3.3.2. 3-Class—We assigned features to the building block nodes following the distinction
across simplified contract types described in the literature and reported in Section 2: factory
deployed contracts (i.e., contracts that generate other contracts), assets, and other contracts.5

3.3.3. Signatures Selectors—Each node Ni in a building block represents a contract address
and therefore contains a list of functions. A function selector can be produced for each function,
which refers to the first 4 bytes (8 characters) of the Keccak-256 (SHA3) hash of a function’s
signature, i.e., the name of the function and its input argument types.32 We utilized the signature
extraction tools suggested by Di Angelo et al. for obtaining the selectors, representing the
signatures, for every node within each building block across the entire building block dataset.33, 34

For each node, we generated a list of function selectors and assigned a unique marker to identical
lists, utilizing this marker as the feature for the node.

3.3.4. Signatures Group—A potential limit of the signatures feature is that two contracts
with mostly identical functions but minor variations would be assigned a different marker
indicating distinct node features in the above function selectors feature. To precisely represent
a smart contract node features by its functionality regardless of minor functional differences,
we categorize contracts into distinct groups by evaluating the pairwise similarities of function
selectors using the Jaccard metric (comparing the overlap between two sets of contract functions);
e.g., ERC20 contracts, despite minor variations, share common functions like transfer, approve,
and balanceOf, resulting in high Jaccard scores and same grouping. Each building block will be
assigned a marker indicating the function selector (representing the signature) group as its node
feature.

3.4. Building Block Labels—To assess the performance of the embedding vectors in tasks
that utilize these embeddings as input, we employed two sources as the target label: Protocol and
Financial Functional Category (FFC). To employ Protocol as the target label, the root node’s
protocol serves as the target label for the building block, meanwhile to use Financial Functional
Category the process is slightly more complex.

To use FFC, we assign each building block to one of eight categories representing its financial
functionality based on its root method name using regular expression patterns with the keywords

6
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2025.402

LEDGER VOL 10 (2025) 1-17

Table 1. Financial Functionality Category and the associated signature keywords.

Financial functionality category Keywords Count

Swap ‘swap’, ‘exchange’ 4950

Lock Capital
‘deposit’, ‘add AND liquidity’, ‘staking’, ‘stake NOT unstake’,

‘lock NOT unlock NOT block’, ‘lend’, ‘collateralize’
550

Redeem or Withdraw
‘withdraw’, ‘remove AND liquidity’,

‘unstake’, ‘unstaking’, ‘unlock’
512

Borrow ‘borrow’ 139

Get Interest or Rewards ‘(get OR claim) AND (reward OR fee)’, ‘harvest’, ‘earn’ 129

Repay ‘repay’ 36

Governance ‘vote’ 16

Liquidate ‘liquidate’, ‘liquidation’ 2

Others - 3666

detailed below in Table 1. Regular expressions are used to search for specific keywords within the
root method names of the building blocks. For instance, if a root method name contains substrings
such as “deposit” or “lend”, it is categorized under the “Lock Capital” action. The presence
of terms negated by “NOT” qualifiers, such as in “stake NOT unstake”, makes a method only
categorized as “Lock Capital” if it involves “stake” without simultaneous involving “unstake”.

We note that the information used for the building block target label Financial Functionality
Category differs from that used as node feature for the Signatures Selectors and the Signatures
Group; indeed, the former uses information from the name of the function invoked only, while the
latter two use data of all functions of a contract, included their arguments. Moreover, for the target
label Protocol, we have labels for all 10,000 building blocks. For the Financial Functionality
Category label, instead, not all building blocks contained one of the regular expressions defined
in Table 1; these were categorized as “other” and excluded from the evaluation. We filtered
out single-node building blocks, as they lack meaningful structural information for clustering
and analysis purposes. Further details on the target labels are reported in Tables 3 and 4 in the
Appendix.

4. Clustering Analysis

In this section, we describe the analysis devised to assess how effectively our embeddings
categorize DeFi building blocks into clusters that reflect their financial functionalities, or other
information such as the protocol they are associated with.

The procedure is presented in the workflow formulated in Algorithm 1. We conducted the
analyses using each node feature FBi (see Section 3.3) and the target building block labels LBi

(see Section 3.4), as described in line 3. We applied the graph2vec algorithm (line 4-8) with an
embedding dimension of µ = 128, a learning rate γ = 0.05, and e = 100 epochs to all the 10,000

7
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2025.402

LEDGER VOL 10 (2025) 1-17

Algorithm 1: Building Block Clustering

Data: A set of building block graphs B = {B1,B2, ...,Bn}. Parameters: dimension µ ,
number of epochs e, learning rate γ . Clustering distance threshold: δ

1 . begin
2 foreach building block Bi in B do
3 Assign each node in Bi with the feature FBi , and a set of labels LBi

4 Initialize matrix Φ ∈ R|B|×µ for building block embeddings
5 for epoch e = 1 to E do
6 Shuffle B

7 foreach building block Bi in B do
8 Update Φ(Bi) using graph learning model (Bi, FBi , µ , γ)

9 C ,Lcluster← agglomerative clustering(Φ,δ)

10 Assign predicted cluster C to each Bi

11 Evaluation: Calculate Homogeneity (H), Completeness (C), V-measure (V) and Purity
(P) using C and labels LBi .

building blocks. We used a threshold of 1.5 for Jaccard Ward distance when producing Signatures
Group node features. After we obtained an embedding vector for each building block, we applied
agglomerative clustering on all the embeddings.35 To determine the optimal clustering distance
threshold δ (line 9), we examined values within the range of [0.6, 1]. The value in this range that
yielded the highest V-measure was chosen to have an optimal balance between homogeneity (to
which extent each cluster contains only building blocks of a single target label) and completeness
(to which extent all building blocks of a given target label are assigned to the same cluster),
calculated by their harmonic mean. V-Measure and Normalized Mutual Information (NMI) with
the arithmetic mean yield the same mathematical outcome since both ultimately measure the
ratio of shared information (MI) relative to the total entropy.36

4.1. Results—We evaluate the clustering performance by computing the homogeneity,
completeness, V-measure, and purity over both target labels and the four node features defined in
Section 3. Table 2 reports the results of our analyses. We highlight in gray the best-performing
specifications. Interestingly, we find that in all cases save one the node feature Signatures Group
yields the best results. This is in line with our expectations since this feature is the most advanced
and captures best the characteristics of the building blocks; the more information incorporated
into the features, the better the results become.

We first focus on the Financial Functionality Category target label. In this specification, the
outcomes yielded the highest value among the feature sets for purity with .888 (using Signatures
Group as node feature). To further interpret these results, we reduce the embedding space into two
dimensions using t-SNE method.37 Figure 2 shows the embedding space of building blocks using
Signatures Group as the node feature and Protocol as the label. In the figure, each dot represents
a building block’s embedding vector, with dimension reduced to 2D using t-SNE and its colour
indicating the corresponding building block label. We find that building blocks associated with
swapping functions, which are the vast majority of building blocks, are clustered close to each
other. On the other side, completeness and V-measure are relatively low. This could be caused by
clusters, such as “Redeem or Withdraw” and “Lock Capital”, being not well separated. However,

8
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2025.402

LEDGER VOL 10 (2025) 1-17

this shows an interesting pattern, as the two functionalities are actually reciprocal to each other.
In summary, the results suggest that the clustering categorizes DeFi building blocks into clusters
where a substantial portion aligns with their distinct financial functionalities.

Table 2. Clustering results for building blocks with combinations of node features and building
block labels. The best results for each target label are highlighted through gray shading,
indicating that the Signature Group node feature produced the optimal clustering outcome
evaluated by both target labels.

Target Label Node Feature δ Cluster Homogeneity Completeness V-measure Purity

Protocol

None 0.64 294 0.371 0.202 0.262 0.582

3-class 0.61 371 0.596 0.284 0.385 0.700

Signatures Selectors 0.70 223 0.822 0.436 0.570 0.860

Signatures Group 0.64 251 0.838 0.432 0.571 0.864

Financial Functionality

Category

None 0.66 279 0.463 0.090 0.160 0.849

3-class 0.70 280 0.594 0.120 0.200 0.856

Signatures Selectors 0.60 283 0.689 0.135 0.225 0.887

Signatures Group 0.62 265 0.706 0.144 0.239 0.888

Next, we look at the Protocol target labels and investigate how the performance changes. As
Table 2 shows, the best-performance purity of .864 is comparable to the one of FFC, whilst all
other measures are relatively higher. Figure 3 illustrates the observed separation by visualizing
the embedding space using t-SNE dimension reduction (and additionally using different marker
shapes to differentiate similar colours). The formed clusters show clear overall separation based
on protocol: building blocks within the same protocol tend to share more common interaction
patterns, characterized by similar sub-graph structures and features, whilst they are distinct from
building blocks of other protocols. Notably, we observe that building blocks from Uniswap
and SushiSwap exhibit close proximity, indicating overlapping functionalities as expected, since
SushiSwap is a fork of Uniswap. Moreover, the building blocks of Convex Finance, a yield
optimizer for the Curve protocol allowing users to earn increased rewards on the Curve token
CRV, are positioned closely to the Curve blocks, possibly indicating reciprocal interactions.38 In
conclusion, we find that the graph embedding method works better in separating building blocks
associated with the same protocol in comparison with FFC.

4.2. Further Insights—When using FFC as the target label, we observed a more fragmented
scenario in clusters (see Figure 2) in contrast to Protocol as target. To look for plausible
explanations and provide a deeper understanding of the method’s performance, we therefore
investigate more closely such differences. In Figure 4, we report illustrative examples of building
blocks associated with the same protocol, that either contain the entire subgraph of another
(left) or share common subgraphs (right). Numbers inside nodes represent the IDs of the
function signature group features. Common transaction patterns are highlighted in red. On
the left, the building block “borrow” of the lending protocol Compound contains the entire
graph of “exchangeRateCurrent”, although the financial functionalities differ. This re-used
subgraph suggests that there likely are internal mechanisms that are not specific to the financial
functionality, but instead are protocol-specific patterns. Also, on the right illustration we find for

9
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2025.402

LEDGER VOL 10 (2025) 1-17

Fig. 2. Visualization of the embedding space of building blocks using Signatures Group as
node feature and Financial Functionality Category as label. The building blocks within the
Swap financial functionality category are well separated from the other categories and form
multiple clusters. Building blocks of certain functionalities, such as “Redeem or Withdraw”
and “Lock Capital” stay close, indicating overlapping characteristics despite different financial
functionality.

10
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2025.402

LEDGER VOL 10 (2025) 1-17

Fig. 3. Visualization of the embedding space of building blocks using Signatures Group as
node feature and Protocol as label. Clusters of most protocols are markedly separated, with
exceptions such as Uniswap and SushiSwap; this reflects well that the latter is a forked project
of the former.

the lending protocol Aave an overlapping pattern, here with a common subgraph within “repay”
and “borrow”. Both examples are indicators for the existence of protocol-specific patterns, that
are re-used across them, without necessarily being part of the financial functionality. These could
be complementary CA-calls to offer the financial services, e.g. get token exchange rates, or serve
as proxies, i.e., many financial services are forwarded by the same instance. Also, the DeFi
community widely supports the open source approach, which created synergies in standard code
and library usage. Consequentially, these common subgraphs might explain higher measures of
the protocol level clustering, compared to the financial functionalities.

5. Discussion and Conclusions

In this paper, we applied graph representation learning and agglomerative algorithms to cluster
basic financial services offered by Decentralized Finance (DeFi) protocols, also called DeFi
building blocks. We measured their similarity based on the subgraph structure of their correspond-
ing DeFi transactions and by exploiting the smart contract attributes as node features. Using as

11
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2025.402

LEDGER VOL 10 (2025) 1-17

Fig. 4. Examples of building blocks with shared common subgraphs highlighted in red.
Numeric values in nodes represent distinct Signature Group node features. Building blocks
of same protocols, while differing in financial functionalities, can either contain the entire
subgraph of another (left) or share common subgraphs (right), suggesting the presence of
protocol-specific patterns reuse.

target labels i) information on the protocols and ii) the financial categories the building blocks
are associated with, we can assess the effectiveness of our method and find that we are able to
cluster building blocks associated with the same financial category with purity and V-measure
respectively as high as .888 and .571.

Our method provides a framework for assessing the proximity of DeFi building blocks that
offer similar functions. Several protocols exhibit a pattern characterized by protocol-specific
clusters and a further grouping of within-protocol sub-clusters. Notably, we also identify relevant
proximity relationships across protocols. The building blocks of Curve and Convex Finance—the
latter being a yield optimizer for the former—are positioned close to each other; the building
blocks of Uniswap and its forked protocol SushiSwap are in very near proximity and often overlap.
Given the open source nature of many DeFi applications, forked projects share re-used code,
resulting in similarities of building blocks. Our method could be useful to identify additional,
novel proximal relationships when including the latest DeFi projects developed.

Our study also aids in systematically comparing different implementations of similar financial
services, thus providing an overview of the most utilized DeFi building blocks by the category
they are associated with. Building blocks facilitating swapping functions are well clustered

12
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2025.402

LEDGER VOL 10 (2025) 1-17

close to each other, and financial functions to withdraw or deposit funds, that are distinct yet
encode a reciprocal, inverse functionality, are not clearly separated. As DeFi evolves, tracking all
existing projects and services offered will be increasingly challenging. Our framework can help
in comparing existing building blocks and in finding similar ones encoding common financial
functionalities.

Similarly, our framework can enhance interoperability across protocols, acting as a support to
effectively automatize and simplify the search of smart contracts that produce similar building
blocks with comparable structure but providing slightly different functionalities. This, in combi-
nation with the use of compatible interfaces and function parameters, could facilitate the creation
of novel DeFi compositions, created by replacing building blocks in use with alternative, similar
ones identified with our setting. Even more, by knowing what building blocks exist (i.e., their
structure and interfaces), developers could create novel smart contracts specifically designed to
facilitate interaction between existing building blocks, and thus create a completely novel array
of compositions.

The devised methodology could benefit from implementing the following improvements.
First, we only focus on transaction data and do not take additional blockchain-related event data
into account to extract, e.g., transfer patterns. Also, the dataset we used is limited in the time
period analyzed and protocols included. Whilst the main purpose of the paper is to devise a novel
approach to cluster similar building blocks, the extension to a longer time frame could provide
further insights and also enable a temporal analysis. Finally, we currently focus only on a limited
number of machine learning and graph representation algorithms. As a next step, we propose to
complement them with additional analyses to cluster and categorize the DeFi functionalities.

Future work could investigate in greater detail the proximity relationships across protocols
identified with our method and propose enhanced solutions to quantify them. For instance, while
the proximity between Uniswap and SushiSwap might indicate the ability to identify forked
projects, more specific testing and verification is necessary to substantiate such a hypothesis.
To improve the clustering, future work should focus on handling protocol-specific transaction
patterns. Also, a very promising approach to improve the methodology could entail the use of
Large Language Models (LLMs), for instance, to extract smart contract information as a node
feature. Such applications can be extended further, for example, to explore possible financial
functionalities of building blocks emerging from new transactions, and predict their functionality
based on their structure and attributes.

13
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2025.402

LEDGER VOL 10 (2025) 1-17

Author Contributions

JL developed the algorithm and conducted the analyses; SK and PS extracted the data and
conceptualized the research questions; all authors interpreted the results and contributed equally
to the writing of the paper.

Funding and Acknowledgments

This work was supported in part by the Austrian security research program KIRAS of the Federal
Ministry of Finance (BMF) under the project DeFiTrace, Grant 905300, and by the FFG BRIDGE
project AMALFI, grant agreement 898883.

Notes and References
1 Auer, R., Haslhofer, B., Kitzler, S., Saggese, P., Victor, F. “The Technology of Decentralized Finance (DeFi).”

Digital Finance 6.1 55–95 (2024) https://doi.org/10.1007/s42521-023-00088-8.

2 Xu, J., Paruch, K., Cousaert, S., Feng, Y. “SoK: Decentralized Exchanges (DEX) with Automated Mar-
ket Maker (AMM) Protocols.” ACM Computing Surveys 55.11 1–50 (2023) https://doi.org/10.1145/
3570639.

3 Kitzler, S., Victor, F., Saggese, P., Haslhofer, B. “A Systematic Investigation of DeFi Compositions in
Ethereum.” In S. Matsuo et al. (Ed.), Financial Cryptography and Data Security. FC 2022 International
Workshops. FC 2022. Lecture Notes in Computer Science. 13412 272–279 (2022) https://doi.org/10.
1007/978-3-031-32415-4_18.

4 Fan, S., Min, T., Wu, X., Wei, C. “Towards Understanding Governance Tokens in Liquidity Mining: A Case
Study of Decentralized Exchanges.” World Wide Web 26.3 1181–1200 (2023) https://doi.org/10.1007/
s11280-022-01077-4.

5 Kitzler, S., Victor, F., Saggese, P., Haslhofer, B. “Disentangling Decentralized Finance (DeFi) Compositions.”
ACM Transactions on the Web 17.2 1–26 (2023) https://doi.org/10.1145/3532857.

6 Khan, A., Akcora, C. G. “Graph-Based Management and Mining of Blockchain Data.” In CIKM ’22:
Proceedings of the 31st ACM International Conference on Information & Knowledge Management 5140–5143
(2022) https://doi.org/10.1145/3511808.3557502.

7 Per https://defillama.com/chains.

8 Lehar, A., Parlour, C. A. “Decentralized Exchange: The Uniswap Automated Market Maker.” SSRN (2021)
(Accessed 24 Jan 2025) https://dx.doi.org/10.2139/ssrn.3905316.

9 Heimbach, L., Schertenleib, E., Wattenhofer, R. “Risks and Returns of Uniswap V3 Liquidity Providers.” In
4th ACM Conference on Advances in Financial Technologies (AFT), Cambridge, Massachusetts, USA 89–101
(2022) https://doi.org/10.1145/3558535.3559772.

10 Fritsch, R., Käser, S., Wattenhofer, R. “The Economics of Automated Market Makers.” In Proceedings of the
4th ACM Conference on Advances in Financial Technologies 102–110 (2022) https://doi.org/10.1145/
3558535.3559790.

11 Heimbach, L., Schertenleib, E., Wattenhofer, R. “Short Squeeze in DeFi Lending Market: Decentralization
in Jeopardy?” In A. Essex, et al. (Eds.), Financial Cryptography and Data Security. FC 2023 International
Workshops: Voting, CoDecFin, DeFi, WTSC, Bol, Brač, Croatia, May 5, 2023, Revised Selected Papers 337–351
(2023) https://doi.org/10.1007/978-3-031-48806-1_22.

12 Sun, X. “Liquidity Risks in Lending Protocols: Evidence from Aave Protocol.” arXiv (2022) (Accessed 24
January 2025) https://doi.org/10.48550/arXiv.2206.11973.

13 Xu, J., Vadgama, N. “From Banks to DeFi: the Evolution of the Lending Market.” In N. Vadgama, J. Xu,
P. Tasca (Eds.), Enabling the Internet of Value: How Blockchain Connects Global Businesses Cham: Springer
53–66 (2022) https://doi.org/10.1007/978-3-030-78184-2_6.

14
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2025.402

https://doi.org/10.1007/s42521-023-00088-8
https://doi.org/10.1145/3570639
https://doi.org/10.1145/3570639
https://doi.org/10.1007/978-3-031-32415-4_18
https://doi.org/10.1007/978-3-031-32415-4_18
https://doi.org/10.1007/s11280-022-01077-4
https://doi.org/10.1007/s11280-022-01077-4
https://doi.org/10.1145/3532857
https://doi.org/10.1145/3511808.3557502
https://defillama.com/chains
https://dx.doi.org/10.2139/ssrn.3905316
https://doi.org/10.1145/3558535.3559772
https://doi.org/10.1145/3558535.3559790
https://doi.org/10.1145/3558535.3559790
https://doi.org/10.1007/978-3-031-48806-1_22
https://doi.org/10.48550/arXiv.2206.11973
https://doi.org/10.1007/978-3-030-78184-2_6

LEDGER VOL 10 (2025) 1-17

14 Xiong, X., Wang, Z., Chen, X., Knottenbelt, W., Huth, M. “Leverage Staking with Liquid Staking Derivatives
(LSDs): Opportunities and Risks.” Cryptology ePrint Archive Paper 2023/1842 (Accessed 25 January 2025)
https://eprint.iacr.org/2023/1842.

15 Popescu, A.-D. “Decentralized Finance (DeFi)–The Lego of Finance.” Social Sciences and Education
Research Review 7.1 321–349 (2020) https://ideas.repec.org/a/edt/jsserr/v7y2020i1p321-348.
html.

16 Schär, F. “Decentralized Finance: On Blockchain- and Smart Contract-Based Financial Markets.” Federal
Reserve Bank of St. Louis Review 2 153–74 (2021) https://doi.org/10.20955/r.103.153-74.

17 Harvey, C. R., Ramachandran, A., Santoro, J. DeFi and the Future of Finance. Newark: John Wiley & Sons
(2021).

18 Kitzler, S., Saggese, P., Diem, C., Bernhard, H., Thurner, S. “Systemic Risk in Decentralized Finance
(DeFi) - An Investigation of Smart Contract Interdependencies.” In Proceedings of the 11th International
Conference on Complex Networks and their Applications 233–235 (2022) https://dx.doi.org/10.5281/
zenodo.7593062.

19 Werner, S., Perez, D., Gudgeon, L., Klages-Mundt, A., Harz, D., Knottenbelt, W. “SoK: Decentralized
Finance (DeFi).” In AFT ’22: Proceedings of the 4th ACM Conference on Advances in Financial Technologies
30–46 (2022) https://doi.org/10.1145/3558535.3559780.

20 Jensen, J. R., Ross, O. “Managing Risk in DeFi.” SSRN (2020) (Accessed 24 January 2025) https:
//dx.doi.org/10.2139/ssrn.3745568.

21 Moin, A., Sekniqi, K., Sirer, E. G. “SoK: A Classification Framework for Stablecoin Designs.” In Finan-
cial Cryptography and Data Security: 24th International Conference, FC 2020, Kota Kinabalu, Malaysia,
February 10–14, 2020 Revised Selected Papers Springer 174–197 (2020) https://doi.org/10.1007/
978-3-030-51280-4_11.

22 Tolmach, P., Li, Y., Lin, S.-W., Liu, Y. “Formal Analysis of Composable DeFi Protocols.” In Financial
Cryptography and Data Security. FC 2021 International Workshops: CoDecFin, DeFi, VOTING, and WTSC,
Virtual Event, March 5, 2021, Revised Selected Papers 25 149–161 (2021) https://doi.org/10.1007/
978-3-662-63958-0_1.

23 von Wachter, V., Jensen, J. R., Ross, O. “Measuring Asset Composability as a Proxy for DeFi Integration.”
In Financial Cryptography and Data Security. FC 2021 International Workshops: CoDecFin, DeFi, VOTING,
and WTSC, Virtual Event, March 5, 2021, Revised Selected Papers 25 109–114 (2021) https://doi.org/
10.1007/978-3-662-63958-0_9.

24 Weber, M., et al. “Anti-Money Laundering in Bitcoin: Experimenting with Graph Convolutional Networks
for Financial Forensics.” arXiv (2019) (Accessed 24 Janaury 2025) https://doi.org/10.48550/arXiv.
1908.02591.

25 Li, S., Gou, G., Liu, C., Hou, C., Li, Z., Xiong, G. “TTAGN: Temporal Transaction Aggregation Graph
Network for Ethereum Phishing Scams Detection.” In WWW’22: Proceedings of the ACM Web Conference
2022 661–669 (2022) https://doi.org/10.1145/3485447.3512226.

26 Pocher, N., Zichichi, M., Merizzi, F., Shafiq, M. Z., Ferretti, S. “Detecting Anomalous Cryptocurrency
Transactions: An AML/CFT Application of Machine Learning-Based Forensics.” Electronic Markets 33 37
(2023) https://doi.org/10.1007/s12525-023-00654-3.

27 Han, B., Wei, Y., Wang, Q., Collibus, F. M. D., Tessone, C. J. “MT2AD: Multi-Layer Temporal Transaction
Anomaly Detection in Ethereum Networks with GNN.” Complex & Intelligent Systems 10 613–626 (2024)
https://doi.org/10.1007/s40747-023-01126-z.

28 Protocols are Badger, Convex, Fei, Harvestfinance, RenVM, Vesper, Yearn, Barnbridge, dYdX, Futureswap,
Hegic, Nexus, Synthetix, 0x, 1inch, Balancer, Curvefinance, SushiSwap, Uniswap, Aave, Compound, Instadapp,
and Maker. The choice of the protocols, their associated contracts, and the timeframe are conditional to the
availability of sources utilized in Kitzler et al. (2022)5

15
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2025.402

https://eprint.iacr.org/2023/1842
https://ideas.repec.org/a/edt/jsserr/v7y2020i1p321-348.html
https://ideas.repec.org/a/edt/jsserr/v7y2020i1p321-348.html
https://doi.org/10.20955/r.103.153-74
https://dx.doi.org/10.5281/zenodo.7593062
https://dx.doi.org/10.5281/zenodo.7593062
https://doi.org/10.1145/3558535.3559780
https://dx.doi.org/10.2139/ssrn.3745568
https://dx.doi.org/10.2139/ssrn.3745568
https://doi.org/10.1007/978-3-030-51280-4_11
https://doi.org/10.1007/978-3-030-51280-4_11
https://doi.org/10.1007/978-3-662-63958-0_1
https://doi.org/10.1007/978-3-662-63958-0_1
https://doi.org/10.1007/978-3-662-63958-0_9
https://doi.org/10.1007/978-3-662-63958-0_9
https://doi.org/10.48550/arXiv.1908.02591
https://doi.org/10.48550/arXiv.1908.02591
https://doi.org/10.1145/3485447.3512226
https://doi.org/10.1007/s12525-023-00654-3
https://doi.org/10.1007/s40747-023-01126-z

LEDGER VOL 10 (2025) 1-17

29 Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S. “graph2vec: Learning
Distributed Representations of Graphs.” arXiv (2017) (Accessed 24 January 2025) https://doi.org/10.
48550/arXiv.1707.05005.

30 Leman, A., Weisfeiler, B. “A Reduction of a Graph to a Canonical Form and an Algebra Arising During
This Reduction.” Nauchno-Technicheskaya Informatsiya 2.9 12–16 (1968).

31 Shervashidze, N., Schweitzer, P., Van Leeuwen, E. J., Mehlhorn, K., Borgwardt, K. M. “Weisfeiler-Lehman
Graph Kernels.” Journal of Machine Learning Research 12.77 2539–2561 (2011) http://jmlr.org/papers/
v12/shervashidze11a.html.

32 See: https://docs.soliditylang.org/en/v0.5.3/abi-spec.html#function-selector.

33 See: https://github.com/gsalzer/ethutils/tree/main/doc/fourbytes for the tools suggested
by Di Angelo et al..

34 Di Angelo, M., Salzer, G. “Tokens, Types, and Standards: Identification and Utilization in Ethereum.” In
J. Xu, S. Schulte, P. Ruppel, A. Küpper, D. Jadav (Eds.), 2020 IEEE International Conference on Decentralized
Applications and Infrastructures (DAPPS) 1–10 (2020) https://doi.org/10.1109/DAPPS49028.2020.
00001.

35 Murtagh, F., Legendre, P. “Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms
Implement Ward’s Criterion?” Journal of Classification 31 274–295 (2014) https://doi.org/10.1007/
s00357-014-9161-z.

36 Becker, H. “Identification and Characterization of Events in Social Media.” (2011) PhD Thesis.
New York: Columbia University (Accessed 24 January 2025) http://www.cs.columbia.edu/~hila/
hila-thesis-distributed.pdf.

37 Van der Maaten, L., Hinton, G. “Visualizing Data Using t-SNE.” Journal of Machine Learning Research
9.86 2579–2605 (2008) http://jmlr.org/papers/v9/vandermaaten08a.html.

38 See: https://docs.sushi.com/docs/Ecosystem/Whitepaper, https://docs.convexfinance.
com/convexfinance.

16
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2025.402

https://doi.org/10.48550/arXiv.1707.05005
https://doi.org/10.48550/arXiv.1707.05005
http://jmlr.org/papers/v12/shervashidze11a.html
http://jmlr.org/papers/v12/shervashidze11a.html
https://docs.soliditylang.org/en/v0.5.3/abi-spec.html#function-selector
https://github.com/gsalzer/ethutils/tree/main/doc/fourbytes
https://doi.org/10.1109/DAPPS49028.2020.00001
https://doi.org/10.1109/DAPPS49028.2020.00001
https://doi.org/10.1007/s00357-014-9161-z
https://doi.org/10.1007/s00357-014-9161-z
http://www.cs.columbia.edu/~hila/hila-thesis-distributed.pdf
http://www.cs.columbia.edu/~hila/hila-thesis-distributed.pdf
http://jmlr.org/papers/v9/vandermaaten08a.html
https://docs.sushi.com/docs/Ecosystem/Whitepaper
https://docs.convexfinance.com/convexfinance
https://docs.convexfinance.com/convexfinance

LEDGER VOL 10 (2025) 1-17

Appendix
Details on Building Block Labels—Tables 3 and 4 provide additional details on the target labels
used to evaluate the clustering embeddings.

Table 3. Label Distribution within Financial Functionality Category. AF: After filtering.

Financial Functionality Category Count AF

Swap 4950 4930

Lock Capital 550 543

Redeem/Withdraw 512 506

Interest/Rewards 129 128

Borrow 139 139

Repay 36 36

Governance 16 8

Liquidate 2 2

Others 3666 3485

Total 10000 9877

Table 4. Label Distribution within Protocol. AF: After filtering.

Protocol Count AF Protocol Count AF Protocol Count AF

Uniswap 4475 4448 Badger 283 281 RenVM 61 58

Aave 795 795 dYdX 244 244 Vesper 44 42

0x 618 606 Harvest Finance 238 234 Hegic 36 34

SushiSwap 532 517 Balancer 207 202 Fei 30 25

Synthetix 500 497 Convex 197 195 Barnbridge 26 24

Curve Finance 495 489 Maker 194 182 Futureswap 11 11

Compound 424 420 Instadapp 148 148 Yearn 5 2

1inch 346 334 Nexus 91 89 Total 10000 9877

17
SSN 2379-5980 (online)

DOI 10.5195/LEDGER.2025.402

