
ISSN 2379-5980 (online)
DOI 10.5195/LEDGER.2017.48

RESEARCH ARTICLE

Equihash: Asymmetric Proof-of-Work Based
on the Generalized Birthday Problem

Alex Biryukov,∗Dmitry Khovratovich†

Abstract. Proof-of-work is a central concept in modern cryptocurrencies and denial-of-
service protection tools, but the requirement for fast verification so far has made it an easy
prey for GPU-, ASIC-, and botnet-equipped users. The attempts to rely on memory-intensive
computations in order to remedy the disparity between architectures have resulted in slow
or broken schemes. In this paper we solve this open problem and show how to construct an
asymmetric proof-of-work (PoW) based on a computationally-hard problem, which requires
a great deal of memory to generate a proof (called a ”memory-hardness” feature) but is instant
to verify. Our primary proposal, Equihash, is a PoW based on the generalized birthday prob-
lem and enhanced Wagner’s algorithm for it. We introduce the new technique of algorithm
binding to prevent cost amortization and demonstrate that possible parallel implementations
are constrained by memory bandwidth. Our scheme has tunable and steep time-space trade-
offs, which impose large computational penalties if less memory is used. Our solution is
practical and ready to deploy: a reference implementation of a proof-of-work requiring 700
MB of RAM runs in 15 seconds on a 2.1 GHz CPU, increases the computations by a factor
of 1000 if memory is halved, and presents a proof of just 120 bytes long.

1. Introduction

Request of intensive computations as a countermeasure against spam was first proposed by
Dwork and Naor in 1992,33 and as denial of service (DoS) protection in the form of TLS client
puzzle by Dean and Stubblefield in 2001.29 The amount of work is certified by a proof, thus
called proof-of-work, which is feasible to get by an ordinary user, but at the same time slows
down multiple requests from the single machine or a botnet. Perhaps the simplest scheme is
Hashcash,16 which requires a hash function output to have certain number of leading zeros and is
adapted within the Bitcoin cryptocurrency. At present, to earn 25 Bitcoins a miner must make an
average of 268 calls to a cryptographic hash function.

Long before the rise of Bitcoin it was realized that dedicated hardware can produce a proof-
of-work much faster and cheaper than a regular desktop or laptop.32 Thus the users equipped
with such hardware have an advantage over others, which has led the Bitcoin mining industry
to concentrate in a few hardware farms of enormous size and high electricity consumption.

∗A. Biryukov (alex.biryukov@uni.lu) is a full professor of Cryptography and Information Security in the Computer Science and
Communications Research Unit at the University of Luxembourg:

16B1873NxbzzX2xNhW2GzYbCBJtjxzF23j
†D. Khovratovich is a post-doctoral researcher at the CryptoLUX cryptography research group at the University of Luxembourg:

1PbreZUDQjpVWFLBSZp3aimaqSyoiLa5eT

LEDGER VOL 2 (2017) 1-30

An advantage of the same order of magnitude is given to “owners” of large botnets, which at
present often accommodate hundreds of thousands of machines. For practical DoS protection,
this means that the early TLS puzzle schemes are no longer effective against the most powerful
adversaries.16, 28

1.1. Memory-hard computing—In order to remedy the disparity between the ASICs and
regular CPUs, Dwork et al. first suggested memory-bound computations,11, 32 where a random
array of moderate size is accessed in pseudo-random manner to get high bandwidth. In later
work they suggested filling this memory with a memory-hard function (though this term was
not used) so that the memory amount can be reduced only at the large computational cost to the
user. 34, 1 As memory is a very expensive resource in terms of area and the amortized chip cost,
ASICs would be only slightly more efficient than regular x86-based machines. Botnets remain a
problem, though on some infected machines the use of GBytes of RAM will be noticeable to
users. One can also argue that the reduced ASIC advantages may provide additional incentives
for botnet creators and thus reduce the security of an average Internet user.42, 26

No scheme in either the 2003 or 2005 work by Dwork et al. has been adapted for the practical
use as a PoW.32, 34 Firstly, they are too slow for reasonably large amount of memory, and must
use too little memory if required to run in reasonable time (i.e., seconds). The first memory-hard
candidates were based on superconcentrators, and similar constructions explored in the theory
of pebbling games on graphs.34, 56, .40 To fill N blocks in memory a superconcentrator-based
functions make N logN hash function calls, essentially hashing the entire memory dozens of
times. Better performance is achieved by the scrypt function and memory-hard constructions
among the finalists of the Password Hashing Competition , but their time-space tradeoffs have
been explored only recently.55, 10, 24, 12, 13

For example, a superconcentrator-based function using N = 225 vertices of 32 bytes each
(thus taking over 1 GB of RAM) makes O(N logN) or cN with large c calls to the hash function
(the best explicit construction mentioned in Dziembowski et al. makes 44N calls,35 thus hashing
the entire memory dozens of time.

Secondly, the proposed schemes (including the PHC constructions) are symmetric with respect
to the memory use. To initialize the protocol in Dwork et al.,32, 34 a verifier must use the same
amount of memory as the prover. This is in contrast with the Bitcoin proof-of-work: whereas it
can be checked instantly (thus computational asymmetry) without precomputation, virtually no
memory-hard scheme offers memory asymmetry. Thus the verifier has to be almost as powerful
as the prover, and may cause DoS attacks by itself. In the cryptocurrency setting, fast verification
is crucial for network connectivity. Even one of the fastest memory-hard constructions, scrypt,55

had to be taken with memory parameter of 128 KB to ensure fast verification in Litecoin. As a
result, Litecoin is now mined on ASICs with 100x efficiency gain over CPU.48

Finally, these schemes have not been thoroughly analyzed for possible optimizations and
amortizations. To prove the work, the schemes should not allow any optimization (which
adversaries would be motivated to conceal) nor should the computational cost be amortizable
over multiple calls.33

A reasonably fast and memory-asymmetric scheme would become a universal tool and could
be used as an efficient DoS countermeasure, spam protection, or a core for a new egalitarian
cryptocurrency.

2
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

LEDGER VOL 2 (2017) 1-30

1.2. Recent asymmetric candidates—There have been two notable attempts to solve the
symmetry and performance problems. The first one by Dziembowski et al. suggests an interactive
protocol, called a proof-of-space, where the prover first computes a memory-hard function and
then a verifier requests a subset of memory locations to check whether they have been filled by a
proper function.35 The verification can thus be rather quick. However, the memory-hard core of
the scheme is based on a stack of superconcentrators and is quite slow: to fill 1 GB of memory
it needs about 1 minute according to the performance reports in Park et al.54 The scheme in
Dziembowski et al. is not amortization-free: producing N proofs costs as much as producing
one.35 As a result, a memory-hard cryptocurrency built on proofs-of-space, Spacecoin, requires
miners to precommit the space well before the mining process, thus making the mining process
centralized.54 We also note that the time-space tradeoff is explored for these constructions for
memory reductions by a logarithmic factor (e.g. 30 for 1 GB) and more, whereas the time
increases for smaller reductions are unknown.

A more promising scheme was proposed by Tromp as the Cuckoo-cycle PoW.61 The prover
must find a cycle of certain length in a directed bipartite graph with N vertices and O(N) edges.
It is reasonably efficient (only 10 seconds to fill 1 GB of RAM with 4 threads) and allows
very fast verification. The author claimed prohibitive time-memory tradeoffs. However, the
original scheme was broken by Andersen: a prover can reduce the memory by the factor of
50 with time increase by the factor of 2 only.14 Moreover, Andersen demonstrated a simple
time-memory tradeoff, which allows for the constant time-memory product (reduced by the factor
of 25 compared to the original). Thus the actual performance is closer to 3-4 minutes per GB.2

Apart from Andersen’s analysis, no other tradeoffs were explored for the problem in Tromp,
there is no evidence that the proposed cycle-finding algorithm is optimal, and its amortization
properties are unknown.61 Finally, Andersen’s tradeoff allows one to parallelize the computations
independently, thus reducing the time-memory product and the costs on dedicated hardware.

Finally, the scheme called Momentum simply looks for a collision in 50-bit outputs of the
hash function with 26-bit input.49 The designer did not explore any time-space tradeoffs, but
apparently they are quite favourable to the attacker: reducing the memory by the factor of q
imposes only a

√
q penalty on the running time (more details in Appendix 1).62

1.3. Our contributions—We propose a family of fast, memory-asymmetric, optimization/am–
ortization-free, limited parallelism proofs of work based on hard and well-studied computational
problems. First we show that a wide range of hard problems (including a variety of NP-complete
problems) can be adapted as an asymmetric proof-of-work with tunable parameters, where the
ASIC and botnet protection are determined by the time-space tradeoffs of the best algorithms.

Our primary proposal, Equihash, is a PoW based on the generalized birthday problem, which
has been explored in a number of papers from both theoretical and implementation points of
view.63, 22, 51, 23, 44 To make it amortization-free, we develop the technique called algorithm
binding by exploiting the fact that Wagner’s algorithm carries its footprint on a solution.

In our scheme a user can independently tune time, memory, and time-memory tradeoff
parameters. In a concrete setting, our 700 MB-proof is 120 bytes long and can be found in
15 seconds on a single-thread laptop with 2.1 GHz CPU. An adversary trying to use 250 MB
of memory would pay 1000-fold in computations using the best tradeoff strategy, whereas a
memoryless algorithm would require prohibitive 275 hash function calls. These properties and
performance are unachievable by existing proposals. We have implemented and tested our scheme

3
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

LEDGER VOL 2 (2017) 1-30

in several settings, with the code available at request. Equihash can be immediately plugged into
a cryptocurrency or used as a TLS client puzzle.

To increase confidence in our proposal, we review and improve the best existing tradeoff
strategies for the generalized birthday problem.

We also show how to build a PoW from two different hard problems generically and get the
best of the their tradeoffs when the algorithm binding technique is not applicable. In this context
we explore the hard knapsack problem, for which the best algorithms have been scrutinized in
the recent papers.41, 18, 31

1.4. Outline—This paper is structured as follows: first, we review the properties required
from an asymmetric proof-of-work and show how to adapt a computationally-hard problem
for a PoW (Section 2); we review the generalized birthday problem and Wagner’s algorithm in
Section 3 and outline our primary proposal in Section 4; and the new results on the time-space
tradeoffs and parallelism are proven in Sections 5 and 6. Generic problem composition is left for
Appendices.

2. Proofs-of-Work and Hard Computational Problems

In this section we list the properties that we require from a proof-of-work and explain in a generic
way how to turn a hard computational problem into a proof-of-work, as well as what the necessary
conditions are for such a problem. A reader interested in a concrete proposal with technical
details may immediately proceed to Section 4.

2.1. Properties—We define a problem

P : R×I ×S →{true, false}.
as a hard predicate, where R is the set of parameters that determine the hardness, I is the
set of inputs conforming to R, and S is the set of possible solutions. We assume that there
is an algorithm (or a family of algorithms) AR that solves PR on any I, i.e. finds S such that
P(R, I,S) = true.

A proof-of-work scheme based on P (and implicitly on the algorithm A for it) is an
interactive protocol, which operates as follows:

(1) The Verifier sends a challenge input I ∈I and parameters R ∈R to the Prover.
(2) The Prover finds solution S such that P(R, I,S) = true and sends it to the Verifier.
(3) The Verifier computes P(R, I,S).

A non-interactive version (e.g., for cryptocurrencies) can be derived easily. In this setting I
contains some public value (last block hash in Bitcoin) and the prover’s ID. The prover publishes
S so that every party can verify the proof.

Informally, A should be moderately hard to impose significant costs on the prover. We also
want all the provers, equipped with sufficient memory, to be in equal position so that no secret
optimization or amortization can be applied. We summarize these requirements to P and A ,
and the other properties it must satisfy in order to become ASIC- and botnet-resistant, in the
following list (cf. Dwork et al. 1992; Jakobsson and Jules).33, 43

2.1.1. Progress-free process—In Bitcoin-like cryptocurrencies the mining process is usually
a race among the miners to see who finds the proof first. To avoid centralization and mitigate
the network delays, the mining must be a stochastic process, where the probability of the proof
generation at any given time is non-zero and independent of the previous events. Therefore,

4
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

LEDGER VOL 2 (2017) 1-30

the mining must resemble the Poisson process, with the number of proofs found in a given
timeframe following the Poisson distribution and the running time of the algorithm AR following
the exponential distribution:

T (AR)∼ Exponential(λ (R)).

The Poisson process is often emulated by a difficulty filter: a fixed-time algorithm B, which
additionally takes some nonce N as input, is concatenated with a hash function G, whose output
should have a certain number of trailing zeros. In this case, the algorithm B must also be
amortization-free, i.e. producing q outputs for B should be q times as expensive.

A scheme that requires noticeable initialization time is not truly progress-free, although after
the initialization the mining could become Poisson again such as in Park et al.54 An informal
statement could be that the shorter the initialization is, the more decentralized the mining will be.

2.1.2. Large AT cost—We expect that the ASIC or FPGA implementation of algorithms
with large area requirements and high area-time product (AT) would not be much better than
desktop implementations by the Price-Performance parameter. The area is maximized by the
memory requirements. Therefore, for a regular user, the optimal implementation of AR should
require sufficiently large memory M. Most desktops and laptops can handle 1 GB of RAM easily,
whereas 1 GB of memory on chip is expensive.3

2.1.3. Small proof size and instant verification—The solution must be short enough and
verified quickly using little memory in order to prevent DoS attacks on the verifier. We assume
that some verifiers may use lightweight hardware such as smartphones with limited RAM and
network bandwidth.

This requirement effectively cuts off straightforward use of memory-hard functions such as
scrypt or the faster Argon2.25 Even though a prover can be required to make exponentially more
calls to these functions than the verifier, the latter still has to make at least one call and use a
great deal of memory, which would motivate denial-of-service attacks on verifiers.

2.1.4. Steep time-space tradeoffs—Memory requirements are worthwhile as long as the
memory reduction disproportionally penalizes the user. Many memory-intensive algorithms can
run with reduced memory. Suppose that AR is a family of algorithms using different amounts of
memory. Then we can think of it as a single algorithm taking the available memory amount as a
parameter.

Let TR(M) be the average running time of AR with memory M. We also fix some standard
implementation and its default memory requirements M0. Let us consider the running time
growth when only M0/q memory is used, q > 1:

CR(q) =
TR(M0/q)
TR(M0)

.

We say that the time-space tradeoff for AR is polynomial with steepness s if CR(q) can be
approximated by a polynomial of q of degree s. We say that the tradeoff is exponential if CR(α)

is exponential of q. We note that polynomial steepness with s = 1 (which we call linear) implies
that the memory can be equally traded for time. This keeps the AT cost constant, but reduces
the design and production cost of a potential chip. Thus higher steepness is desirable. Finding
time-space tradeoffs for most hard problems is a non-trivial task, as the best algorithms are
usually optimized for computational complexity rather than for space requirements.17, 36

5
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

LEDGER VOL 2 (2017) 1-30

2.1.5. Flexibility—To account for further algorithm improvements and architecture changes,
the time, memory, and steepness of the PoW must be tunable independently. For cryptocurrencies
this helps to sustain a constant mining rate. We recommend the following procedure (Fig. 1). To
adjust M, we change R and get a new complexity (T ′,M′). To increase T by the factor 2d , we
harden P in the style of the Bitcoin difficulty filter: H(S) must have d leading zero bits, where
H is a cryptographic hash function.

M Memory

Time

PR

PR′

Increasing time

Reducing memory

Diff(q) ◦ PRqT

M ′

T

Fig. 1. Time and memory requirements for proof-of-work. The problem with parameters R
can be solved in time T and memory M. In order to change M to M′, we replace R with R′.
To increase time by the factor of q, we add the difficulty filter q in addition to R.

2.1.6. Parallelism-constrained—When a large portion of an ASIC is occupied by memory,
adding a few extra cores does not increase the area. If A can be parallelized, then the total
time may be reduced and thus the AT cost can be lowered. However, if these cores have to
communicate with each other, then the parallelism is limited by the network bandwidth. Thus if a
specific PoW allows parallelism, the parallel version of algorithm AR should be bandwidth-hard,
i.e. it quickly encounters the bottleneck in the network or RAM bandwidth.

2.1.7. Optimization-free—To avoid a clever prover getting advantage over the others, A

must be the most efficient algorithm to date, already employing all possible optimizations and
heuristics, and it should be hard to find better algorithms.

We can now identify the problems with the Cuckoo-cycle PoW.61 It can be parallelized, which
lowers the AT cost; dramatic optimizations have been identified;14 its time-space tradeoff has
steepness 1; and finally, it has not been explored for amortization.

2.2. Memory-hard proof-of-work based on a hard problem—Several hard computational
problems suitable for a proof-of-work (PoW) were studied by Dwork and Naor and later by
Back.33, 16 These were PoWs with computational shortcuts: a verifier spends much less time
than the prover. One could hope for memory shortcuts as well, i.e. verification requiring much
less memory than the generation. However, a memory-hard PoW with a memory shortcut has
been an open problem for quite a long time, as the existing proposals implicitly require both the
verifier and the prover to allocate the same amount of memory.

Nevertheless, almost any hard problem can be turned into a proof-of-work in the framework
outlined in Section 2.1. Any reader with an expertise in a particular problem is thus encouraged
to create his own PoW. The well-known NP(-complete) problems (including their search and
optimization analogs) are the most natural candidates, since the best algorithms for them run
in exponential time, i.e. logT = O(|I|). On the other hand, the verification is polynomial in

6
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

LEDGER VOL 2 (2017) 1-30

|I|, so it is polylogarithmic in T . Thus the verification for NP-complete-based PoW should be
fast compared to the running time. Moreover, the best algorithms for NP-complete problems
usually require a non-negligible amount of memory and exhibit non-trivial time-space tradeoffs.36

SAT solving, cliques, and Hamiltonian paths are all candidates for a PoW. The problems not
demonstrated to be NP-complete but with best algorithms running in exponential time like
factoring and discrete logs are natural proposals as well.

2.3. Inevitable parallelism—It is interesting to explore whether parallelism can be com-
pletely avoided; in other words if there exists a hard problem-based PoW that is inherently
sequential.

We want for the PoW algorithm, which runs in time T and memory M ≈ T on a single
processor (thus implying the time-area cost of O(T 2)), not to be significantly sped up using O(T)
processors. We believe that this is impossible in the following PoW-building paradigms.

A first approach could be to formulate the problem entirely for the short original input without
explicit expansion. However, as we require fast verification and short input, i.e. |I|= O(logT),
the problem we solve is implicitly in NP. Therefore, it can be solved in logT time using T
processors (which in essence try all possible solutions).

A second approach (which we undertake in Equihash) is to expand the input from I to Î (so
that |I| = log |Î|) using some PRNG (e.g., a hash function in the counter mode as we do) and
apply a problem from P to Î. Here we also have an obstacle: many problems from P can be solved
in polylogarithmic time using a polynomial number of processors, i.e. they actually belong to the
class NC. It is conjectured though that NC (P, which would imply the existence of P-problems
outside of NC. If they exist, they belong to the class of P-complete problems, which reduce
to each other with a polylogarithmic number of parallel processors. Unfortunately, the known
P-complete problems and those assumed to be inherently sequential (such as the GCD problem)
are not known to be verifiable in logarithmic time, even if we somehow manage to generate their
inputs from logarithmically shorter ones.

To conclude, there is little foundation to prevent parallelism in a hard problem-based PoW, so
we cope with it in a different manner – by showing that any parallel solution would enlarge the
chip prohibitively or require enormous memory bandwidth.

2.4. Choosing a hard problem for PoW—It turns out that the properties that we listed in
Section 2.1 are hard to satisfy simultaneously. A great difficulty lies in the optimization-free
requirement, as the complexity of the most algorithms for hard problems is not evaluated with
sufficient precision. Many algorithms are inherently amortizable. The existing implementations
contain a number of heuristics. We conclude that the problem and the best algorithm must be
very simple. So far we have identified three problems, for which the best algorithms are explored,
scrutinized, and implemented:
• The generalized-birthday, or k-XOR problem, which looks for a set of n-bit strings that

XOR to zero. The best existing algorithm is due to Wagner with minor modifications in
Minder ad Sinclair.63, 51 The algorithm’s time-space tradeoffs were explored in Bernstein
(2007) and it was implemented in Bernstein et al. (2009).22, 23 This problem is the most
interesting, as we can manipulate the tradeoff by changing k.
• The hard-knapsack problem, which looks for a subset of signed integers summing to 0.

Whereas earlier instances of the knapsack problem can be solved in polynomial time,
certain parameters are considered hard.60 For the latter the best algorithms are given in

7
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

LEDGER VOL 2 (2017) 1-30

Howgrave-Graham and Joux, and Becker et al. (2011).41, 18 This problem is appealing,
as its solution is likely to be unique, and the time and memory complexity are roughly the
same.
• The information set decoding problem, which looks for a codeword in random linear

code. Many algorithms were proposed for this problem, and many were implemented
so we expect them to be well scrutinized.19 However, in the typical setting the memory
complexity is significantly lower than the time complexity.

Among these, the generalized birthday problem appears the most suitable, as its tradeoff
steepness is tunable. In the next sections we introduce the problem and build our primary PoW
proposal on it.

3. Equihash: Generalized-Birthday Proof-of-Work

In this section we expose the generalized birthday problem and the algorithm for it by Wagner.63

3.1. Problem—The generalized birthday problem for one list is formulated as follows: given
list L of n-bit strings {Xi}, find distinct {Xi j} such that

Xi1⊕Xi2⊕·· ·⊕Xi2k = 0.

We consider the setting where Xi are outputs of some (non-keyed) PRNG, e.g. a hash function H
in the counter mode. Thus we have to find {i j} such that

H(i1)⊕H(i2)⊕·· ·⊕H(i2k) = 0. (1)

For k = 1 this problem is the collision search, and can be solved trivially by sorting in 2n/2

time and space complexity if |L| > 2n/2. However, for k > 1 and smaller lists the problem is
harder. For instance, from the information-theoretic point of view we expect a solution for k = 2
in a list of size 2n/4, but no algorithm faster than 2n/3 operations is known.

Wagner demonstrated an algorithm for k > 1 and the lists are large enough to contain
numerous solutions. It has time and space complexity of O(2

n
k+1) for lists of the same size.

Wagner’s algorithm generalizes easily to some operations other than XOR (e.g., to the modular
addition). We also note that for k ≥ log2 n a XOR solution can be found by the much faster
Gaussian elimination with complexity of O(2k) string operations.20

8
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

LEDGER VOL 2 (2017) 1-30

3.2. Wagner’s algorithm—The basic algorithm to find a solution to Equation (1) is described
in Algorithm 1.

Algorithm 1 Basic Wagner’s algorithm for the generalized birthday problem.
Input: list L of N n-bit strings (N� 2n).

(1) Enumerate the list as {X1,X2, . . . ,XN} and store pairs (X j, j) in a table.
(2) Sort the table by X j. Then find all unordered pairs (i, j) such that Xi collides with X j on

the first n
k+1 bits. Store all tuples (Xi, j = Xi⊕X j, i, j) in the table.

(3) Repeat the previous step to find collisions in Xi, j on the next n
k+1 bits and store the

resulting tuples (Xi, j,k,l, i, j,k, l) in the table.
(4) [...] Repeat the previous step for the next n

k+1 bits, and so on until only 2n
k+1 bits are

non-zero.
(5) [k+1] At the last step, find a collision on the last 2n

k+1 bits. This gives a solution to the
original problem.

Output: list {i j} conforming to Equation (1).

3.3. Analysis—For the further text, assume that sorting l = O(N) elements is computation-
ally equivalent to l calls to the hash function H.4 Let a single call to H be our time unit.

Proposition 1. For N = 2
n

k+1+1 and k2 < n Algorithm 1 produces two solutions (on average)
using (2k−1 +n)N/8 bytes of memory in time (k+1)N.

Proof. Suppose we store N = 2
n

k+1+1 tuples at the first step. Then after collision search we expect

(N(N−1)/2)/(N/2) = N−1

entries for the second table, then N−3 entries for the third table, and so on. Before the last (k-th)
collision search we expect N−2k−1 +1≈ N = 2

n
k+1+1 entries, thus on average we obtain two

solutions after the last step.
The computational complexity is dominated by the complexity of list generation (N hash

calls) and subsequent k sortings of N elements. Therefore, the total computational complexity is
equivalent to

(k+1)N = (k+1)2
n

k+1+1

hash function calls. This ends the proof.
We have not computed the variance of the number of solutions, but our experiments demon-

strate that the actual number of solutions at each step is very close (within 10%) to the expected
number.

If larger lists are used, the table will grow in size over the steps. We have taken the list size
exactly so that the expected number of solutions is small and the table size does not change much.

3.4. Algorithm binding—The generalized birthday problem in its basic form lacks some
necessary properties as a proof-of-work. The reason is that Wagner’s algorithm can be iterated to
produce multiple solutions by selecting other sets of colliding bits or using more sophisticated
techniques.23 If more memory is available, these solutions can be produced at much lower
amortized cost (Proposition 3). Since this property violates the non-amortization requirement
for the PoW (Section 2.1), we suggest modifying the problem so that only two solutions can be
produced on average.

9
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

LEDGER VOL 2 (2017) 1-30

Our modification is inspired by the fact that a solution found by Wagner’s algorithm carries
its footprint. Namely, the intermediate 2l-XORs have leading nl

k+1 bits, for example Xi4⊕Xi5⊕
Xi6⊕Xi7 collide on certain 2n

k+1 bits. Therefore, if we pre-fix the positions where 2l-XORs have
zero bits, we bind the user to a particular algorithm flow. Moreover, we can prove that the total
number of possible solutions that conform to these restrictions is only 2 on average, so that the
problem becomes amortization-free for given input list L. We only have to take care of duplicate
solutions which appear if we swap 2l−1-XORs within the 2l-XOR, for any l. We simply require
that every 2l-XOR is ordered as a pair, e.g. with lexicographic order. We stress that a certain
order is a prerequisite as otherwise duplicate solutions (produced by swaps in pairs, swaps of
pairs, etc.) would be accepted.

With this modification the Gaussian elimination algorithm does not apply any longer, so we
can use larger k with no apparent drop in complexity.20

3.5. Time-space tradeoffs—The time-space tradeoffs for Wagner’s algorithm are explored
in details in Section 5.2. Here we report the main results. First, we consider optimizations, which
are based on methods from.23

Proposition 2. Optimized Wagner’s algorithm (Algorithm 2) for N = 2
n

k+1+1 runs in M(n,k) =
2

n
k+1 (2k + n

2(k+1)) bytes of memory and T (n,k) = k2
n

k+1+2 time.5

The next proposition is a corollary from results in Bernstein (2007).22

Proposition 3. Using qM(n,k) memory, a user can find 2qk+1 solutions with cost qT (n,k), so
that the amortized cost drops by qk−1.

Our novel result is the following tradeoffs for standard and algorithm-bound problems.

Proposition 4. Using M(n,k)/q memory, a user can find 2 solutions in time C1(q)T (n,k), where

C1(q)≈
3q

k−1
2 + k

k+1
.

Therefore, Wagner’s algorithm for finding 2k-XOR has a tradeoff of steepness (k−1)/2. At
the cost of increasing the solution length, we can increase the penalty for memory-reducing users.

Proposition 5. Using constant memory, a user can find one algorithm-bound solution in time

2
n
2+2k+ n

k+1 .

Proposition 6. Using M(n,k)/q memory, a user can find 2 algorithm-bound solutions in time
C2(q)T (n,k), where

C2(q)≈ 2kqk/2kk/2−1.

Therefore, the algorithm-bound proof-of-work has higher steepness (k/2), and the constant is
larger.

3.6. Parallelism—Thus far we have equalized the time and computational complexity,
whereas an ASIC-equipped user or one with a multi-core cluster would be motivated to parallelize
the computation if this reduces the AT cost. The following result, also stated in Bernstein (2007),
is explained in details in Section 6.22

10
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

LEDGER VOL 2 (2017) 1-30

Proposition 7. With p� T (n,k) processors and M(n,k) shared memory a user can find 2
algorithm-bound solutions in time T (n,k)

p (1− logN p). Additionally, the memory bandwidth grows
by the factor of p.

For fixed memory size, memory chips with bandwidth significantly higher than that of typical
desktop memory (such as DDR3) are rare. Assuming that a prover does not have access to
memory with bandwidth higher than certain Bwmax, we can efficiently bound the time-memory
(and thus the time-area) product for such implementations.

Corollary 3.0.1. Let the reference memory of size M have bandwidth Bw, and let the prover be
equipped with memory chips of bandwidth Bwmax. Then the time-area product for the prover can
be reduced by the factor Bwmax

Bw using Bwmax
Bw parallel sorting processors.

To the best of our knowledge, the highest reported bandwidth in commercial products does not
exceed 512 GB/s (Radeon R9 variants), whereas the desktop DDR3 can have as high as 17 GB/s
bandwidth.30 Thus we conclude that the highest advantage a prover can get from parallel on-stock
hardware does not exceed the factor of 30. This may mean that our proof-of-work is GPU- and
desktop-friendly, whereas it is also ASIC-resistant in the sense that an ASIC implementation
does not yield smaller time-area product.

4. Primary Proposal

4.1. Specification—To generate an instance for the proof protocol, a verifier selects a cryp-
tographic hash function H and integers n,k,d, which determine time and memory requirements
as follows:
• Memory M is 2

n
k+1+k bytes.

• Time T is (k+1)2
n

k+1+d calls to the hash function H.
• Solution size is 2k(n

k+1 +1)+160 bits.
• Verification cost is 2k hashes and XORs.

Then he selects a seed I (which may be a hash of transactions, block chaining variable, etc.)
and asks the prover to find 160-bit nonce V and (n

k+1 +1)-bit x1,x2, . . . ,x2k such that

/∗Gen.birthday−condition∗/
H(I||V ||x1)⊕H(I||V ||x2)⊕·· ·⊕H(I||V ||x2k) = 0,

/∗Difficulty−condition∗/
H(I||V ||x1||x2|| . . . ||x2k) has d leading zeros,

/∗Alg.binding−condition∗/
H(I||V ||xw2l+1)⊕ . . .⊕H(I||V ||xw2l+2l)

has nl
k+1 leading zeros for all w, l

(xw2l+1||xw2l+2|| . . . ||xw2l+2l−1)<

< (xw2l+2l−1+1||xw2l+2l−1+2|| . . . ||xw2l+2l).

(2)

Here the order is lexicographical. A prover is supposed to run Wagner’s algorithm and then H
(Fig. 2).

11
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

LEDGER VOL 2 (2017) 1-30

I

A
Wagner’s
algorithm

H
Difficulty
filter

V

(x1, x2, . . .)

0

n, k

for 2k-XOR

?

Fig. 2. Equihash: proof-of-work based on the generalized birthday problem .

The analysis in Section 1fsec:birth shows that Wagner’s algorithm produces 2 solutions per
call on average for each V . Thus to produce a hash with d leading zeros it must be called 2d−1

times with distinct V , which yields the time complexity (k+1)2
n

k+1+d . The memoryless verifier
checks all the conditions. Note also that computations for V =V0 can not be reused for another
V 6=V0. Note that the order of two (or more solutions) produced by Wagner’s algorithm is not
important; we do not have to enumerate them; only the one that passes the d-zero test is needed.
Furthermore, also note that shorter (2l, l < k) solutions are not allowed neither full solutions
based on them (the order prohibits this).

Our proposal fulfills all the properties from Section 2.1. The large AT cost is ensured by
M ≥ 230. The implementation can be made fast enough to use M = 229,n = 144,k = 5 in 15
seconds with 1 thread. The verification is instant, as it requires only 2k hashes. The tradeoff has
steepness (k−1)/2 and a large constant. Parallelism is restricted due to the memory bandwidth
growth in parallel implementations. Optimizations are explored, and amortization does not
reduce costs as the number of solutions is small on average. Finally, time, memory, and steepness
can be adjusted independently.

4.2. Implementation and concrete parameters—Varying n and k we can reach a wide range
of the memory and time complexity of our proof-of-work proposal. From the implementation
point of view, it is convenient to have n

k+1 as multiples of 8 so that we can work with integer
numbers of bytes. The solution size in bits is computed by formula

L = 2k(
n

k+1
+1)+160.

We suggest a wide range of parameters, which cover different memory requirements and
tradeoff resistance (Table 1). The memory and time requirements are taken from Proposition 2
with ε = 0 and indices trimmed to 8 bits. As a proof of concept, we have implemented and tested
Equihash with various parameters. Our implementation is written in C++ with STL without
assembly/intrinsic optimizations.6 We used bucket sort and extra memory to store the resulting
collisions. The performance is reported in Table 2. We see that Equihash runs in a few seconds
up to hundreds of MBytes, and can be called progress-free if we consider periods of one minute
or longer.

12
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

LEDGER VOL 2 (2017) 1-30

Complexity

Memory-full Memoryless

n k Peak memory Time Time Solution size

96 5 2.5 MB 219.2 274 88 B

128 7 8.5 MB 220 294 292 B

160 9 32.5 MB 220.3 2114 1.1 KB

176 10 64.5 MB 220.4 2124 2.2 KB

192 11 128.5 MB 220.5 2134 4.4 KB

96 3 320 MB 227 278 45 B

144 5 704 MB 227.5 2106 120 B

192 7 4.2 GB 228 2134 420 B

240 9 16.4 GB 228.2 2162 1.6 KB

96 2 82 GB 234.5 284 37 B

288 8 131 GB 236 2192 1.1 KB

Table 1. Concrete parameters and their security level for Equihash. Memory-
full complexities are taken from the analysis of Algorithm 2 (Proposition 2).
Memoryless complexity is taken from Proposition 5. Time is counted in hash
calls.

Complexity

n k Minimum memory Time Solution size

96 5 2.5 MB 0.25 sec 88 B

102 5 5 MB < 0.5 sec 92 B

114 5 20 MB < 2 sec 100 B

80 4 1.5 MB 0.2 sec 58 B

90 4 6 MB 1 sec 62 B

100 4 26 MB 4 sec 66 B

96 3 320 MB 10 sec 45 B

144 5 704 MB 15 sec 120 B

200 9 522 MB 10 sec 2.5 KB

Table 2. Performance of our Equihash solver on 2.1 GHz machine with a sin-
gle thread. Minimum memory is the optimized amount of memory given by
Proposition 2; our implementation takes about 4 times as much.

13
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

LEDGER VOL 2 (2017) 1-30

5. Time-Space Tradeoffs, Optimizations for Generalized Birthday Problem

There can be two types of time-space tradeoffs for the generalized birthday algorithm. First, there
could be small optimizations in storing the indices, hash outputs, and sorting algorithms. We
will show that the straightforward implementation of the generalized birthday algorithm allows a
memory reduction by a small factor (2 or 3 depending on the parameters) with about the same
increase in the time complexity. However, these optimizations are limited.

If the prover wanted to save further memory, he would have to reduce the total number of
tuples. We will show that this approach would cause him harsh computational penalties.

5.1. Optimizations—In Algorithm 1 the index size doubles in size at each step, whereas
we can trim n

k+1 of intermediate sum per step. There can be two types of optimizations, partly
explored in Bernstein et al.:23

• Not storing the intermediate XOR value but recomputing it at each step from the indices.
This approach was taken in Bernstein et al.23 However, for large k this approach becomes
too expensive.
• Storing only a fraction of index bits, e.g. t bits only per index. Then after the last step

we have to figure out the missing bits for all 2k-XOR candidates. For large t this can be
done by simply checking the 2-XOR of all subpairs of the 2k-XOR. For smaller t we
essentially have to repeat our algorithm with 2k different lists, which gives an overhead
time factor about k, and 2

n
k+1+1−t values in each list.

These two optimizations are illustrated in Fig. 3 for n = 144,k = 5. It appears that the
combination of both optimizations yields the best results, where we recompute the hashes from
at first steps, and trim the indices at later steps (Algorithm 2).

Steps

Tuple
448

272

196

170169

21 3 4 5

176

136

49

length

74
128

Standard

Optimized

200

100

Truncated value
full index

Truncated index
full value

300

400

Fig. 3. Tuple length in bits over the steps of Wagner’s algorithm in the basic and the optimized
implementations.

14
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

LEDGER VOL 2 (2017) 1-30

Algorithm 2 Optimized Wagner’s algorithm for the generalized birthday problem.
Input: list L of N n-bit strings.

(1) Enumerate the list as {X1,X2, . . . ,XN} and store pairs (j) in a table.
(2) Sort the table by X j, computing it on-the-fly. Then find all unordered pairs (i, j) such that

Xi collides with X j on the first n
k+1 bits. Store all such pairs (i, j) in the table.

(3) Repeat the previous step to find collisions in Xi, j (again recomputing it on the fly) on the
next n

k+1 bits and store the resulting tuples (i, j,k, l) in the table.
(4) [...] Repeat the previous step for the next n

k+1 bits, and so on. When indices trimmed to 8
bits plus the length Xi, j,... becomes smaller than the full index tuple, switch to trimming
indices.

(5) [k+1] At the last step, find a collision on the last 2n
k+1 bits. This gives a solution to the

original problem.
Output: list {i j} conforming to Equation (1).

The optimal pattern depends on n and k, so we checked it manually for all suggested
parameters assuming that we trim the indices to 8 bits. For all parameters the peak memory
use is in the last step, and for all parameters except n = 96,k = 2,3 it is optimal to switch to
index trimming before the last step. Therefore, the peak memory is upper bounded by 2k−1 8-bit
indices per tuple at the last step. Therefore, at the last step the tuple length is 2n

k+1 +8 ·2k−1 bits,
or 2

n
k+1 (2k + n

2(k+1)) bytes in total. To recover the trimmed bits, we generate 2
n

k+1−7 hash values

for each i j and run the algorithm again, now with 2k lists, each 28 times as small. In the multi-list
version of the algorithm, it suffices to keep only k lists in memory sumultaneously.44 The time
complexity of the multi-list step is dominated by generating the 2k values, as later lists are much
smaller. Thus the multi-list phase runs in 2

n
k+1−7+k time, which is smaller than (k−1)2

n
k+1+1 for

all our parameters. This implies Proposition 2.
5.2. Generic tradeoffs—If a prover wanted to save even more memory than the indices

allow, he would have to store fewer tuples at each step. The first time-space tradeoffs of this
kind were explored in Bernstein (2007).22 Suppose that the adversary stores only 2

n
k+1+1/q

elements at each step, q > 1. Then Bernstein suggests truncating H to n− (k+1) logq bits and
apply Wagner’s algorithm to n′ = n− (k+1) logq. After the last step we check if the remaining
(k+1) logq bits are zero, which succeeds with probability q−k−1. Therefore, the algorithm must
be repeated qk+1 times, but each step is cheaper by the factor of q. Thus the computational
penalty is computed as C(q) = qk. We note that the same reasoning applies to the case where
more memory is available: if we have qM(n,k) memory for q > 1 then we obtain 2qk+1 solutions
in the end, but we spend q times as many computations. This implies Proposition 3.

In the later paper Bernstein et al. suggested applying the memoryless collision search method
at the last step of the algorithm.23 They viewed the first (k−1) steps as a single function H that
outputs 2n

k+1 +(k+1) logq bits. The complexity of the memoryless collision search is about the
square root of the output space size, with more precise estimate of 4 ·2l/2 for l-bit function.62, 53

Therefore, the total computational complexity is

4 ·2 n
k+1+

(k+1) logq
2 · k ·2 n

k+1+1−logq = 4k2
2n

k+1+1 ·q(k−1)/2

15
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

LEDGER VOL 2 (2017) 1-30

and the total computational penalty is computed as

C(q)≈ 4 ·2 n
k+1 q

k+1
2 .

Later, Kirchner suggested using available memory for the last step, getting a slightly better
tradeoff.44, 7 The drawback of both approaches is that they require multiple iterations of the
algorithm and thus are very demanding in terms of memory and network bandwidth in practical
implementations.

5.3. Parallel collision search—The following result is of great importance for our tradeoff
exploration. The parallel collision search algorithm for the function that maps m bits to n bits,
m≥ n, due to van Oorschot and Wiener,62 finds T collisions using 2wm bits of memory in time

2.5T ·2n/2
√

w
. (3)

Here the memory is occupuied by w distinguished points, and about 2n/2√w calls must be spent
to generate those points. Every point is a pair of inputs plus some additional information.

Proof of Proposition 4 Our idea to improve Bernstein’s tradeoffs is to increase the number
of colliding bits at the first step to n

k+1 + k logq and generate 2
n

k+1+1/q collisions. The next
(k−2) steps require collisions on logq fewer bits each, and the final step — on 2logq fewer bits.
Then on average we obtain the same 2 collisions at the last step, thus being as lucky as in the
memory-full approach. Therefore, we run Wagner’s algorithm only once, as soon as we get the
necessary amount of inputs. However, the first step is more expensive.

A straightforward approach to generate that many collisions would be to carry Bernstein’s
idea to the first step of Algorithm 2 and keep only those inputs that yield k logq leading zero
bits. However, this gives the computational penalty factor of qk−1. A better approach is to use
the parallel collision search method, where the average cost of one collision grows sublinearly
as a function of memory (Equation (3)). Each distinguished point is smaller than the output of
H. Using 2

n
k+1+1/q distinguished points to generate 2

n
k+1+1/q collisions on n

k+1 +k logq bits, we
make

5 ·2
n

2(k+1)+
k logq

2 + n
2(k+1)+

1−logq
2 ≈ 3 ·q k−1

2 ·2 n
k+1+1

calls to H. The next steps calls the equivalent of k
q2

n
k+1+1 hash calls. The success rate is the same.

Thus the total computational penalty is estimated as

C(q)≈ 3q
k−1

2 + k
k+1

.

5.4. Algorithm-bound tradeoffs—In our proof-of-work proposal we explicitly specify that
the solution must carry the footprint of Wagner’s algorithm, in particular all intermediate 2l-
XORs must have nl

k+1 zeros at certain positions. First we show that the expected total number

of solutions that conform to this property is 2. Indeed, there are 2
2kn
k+1+2k

ordered 2k-tuples of
n

k+1 -bit values. There are 2k−1 intermediate 2l-XORs that must have lexicographic order, which

reduces the total number of tuples to 2
2kn
k+1+1. The restriction of having zeros at certain position

contains one 2n
k+1 -bit condition at the last step, two n

k+1)-bit conditions at the step before last,...,

16
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

LEDGER VOL 2 (2017) 1-30

2k−1 n
k+1 -bit conditions at the first step, or 2k n

k+1 filtering bits in total. Thus there are 2 possible
solutions left on average.

n
2

n
k+1

n
k+1

Memory

Solution cost

generic
tradeoff

Best

Bernstein’s
tradeoff

Optimization
tradeoff

Bernstein-Kirchner
tradeoff

Default
implementation

Fig. 4. Computation-memory tradeoffs for the generalized birthday algorithm: ours (Propo-
sition 4), Bernstein’s,22 and “Bernstein-Kirchner”.23, 44 The complexities are given in log2.

Let us now explore the time-space tradeoffs. It is not evident that the tradeoffs that we
obtained in Section 5.2 can be carried out to the algorithm-bound setting. Since the inputs to H
are limited to 2

n
k+1+1 values, it is not trivial even to find a memoryless attack with complexity

smaller than 2n. Surprisingly, the tradeoffs for algorithm-bound adversaries are only slightly
worse than the original ones.

Proof of Proposition 5 First we show how to find an algorithm-bound solution with very
low memory. Recall that the memoryless collision search for f works as the ρ-method: we
iterate f till we detect a cycle so that the two different entry points to the cycle constitute a
collision. A cycle is detected by either iterating f () and f (f ()) simultaneously or by storing a
few distinguished points along the iteration. The time complexity is about 4 ·2l/2 for l-bit f for
the success rate close to 1.53 However, we might have to truncate f first to ensure that its domain
is as large as the range.

It is important to know that the basic memoryless algorithm is seeded, i.e. it starts at some
point and the eventual complexity is determined by this point. We can imagine an oracle O f that
takes S as seed and outputs a collision for f .

Consider Equation (2). The algorithm binding requires us to find a solution such that the
intermediate 2l-XORs collide on certain nl

k+1 bits. Let us denote such XORs by separate functions:

f 2l
= H(I||x1)⊕H(I||x2)⊕·· ·⊕H(I||x2l)

Therefore for the original problem we have to find a collision in f 2k−1
, and in the algorithm-bound

setting each of the colliding inputs must itself be a collision for f 2k−2
on fewer bits and so on.

At each subsequent step we require a collision on n
k+1 bits only, as the colliding bits accumulate

from the nodes of the recursion to the root. Note that f 2k−1
has only 2

n
k+1+1 inputs but a 2n

k+1 -bit
output, i.e. it is an expanding function.

17
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

LEDGER VOL 2 (2017) 1-30

This suggests the memoryless solution search as a recursive memoryless collision search. The

last step makes 9 ·2
3n

2(k+1) calls to O
f 2k−1 (Appendix 1) where the seeds are intermediate inputs to

f 2k
. Oracle O

f 2k−1 makes 2
n

2(k+1)+2 calls to O
f 2k−2 , and so on. In total we make 2

n
2+2k+ n

k+1 calls
to f to find one collision. This ends the proof.

Proof of Proposition 6 The memoryless solution search can be adapted for the reduced memory
settings. The idea is to replace the memoryless collision search at each level but the last one with
the collision search with distinguished points. In contrast to Section 5.2, we apply the method
recursively, and do not store the solutions. However, we have to store distinguished points for
each recursion level simultaneously, which affects the computation complexity as follows.

Suppose we have memory sufficient to store only 2
n

k+1+1/q tuples for some q > 1. We split
the available memory evenly between k sets of distinguished points (for the sake of simplicity

assume that each point is about the same size as the tuple), so that each set contains 2
n

k+1+1

qk points.
The sets are available at all levels. The amortized collision cost using w distinguished points is
2.5 · 2n/2√

w (Equation (3)). Thus we obtain that oracle O
f 2l makes on average

2.5 ·2
n

2(k+1)−
n

2(k+1)−0.5√qk ≈ 2
√

qk

calls to O
f 2l−1 to produce a solution. The final oracle makes 2.5 ·2

3n
2(k+1)+1.5

/
√

w≈ 2
n

k+1+2√qk
calls to O

f 2k−1 . Therefore, the total computational complexity is

2
n

k+1+1 ·2kqk/2kk/2,

and the penalty should be computed as

C(q)≈ 2kqk/2kk/2−1.

This ends the proof.
Let us take one of our concrete parameters as an example. Let n = 144,k = 5, i.e. we

suggest finding 32-XOR on 144 bits. A straightforward implementation of the generalized
birthday algorithm would require 1.6 GBytes of RAM and about 1 minute of a single CPU core.
Recomputing the hash values for the first two steps and truncating the indices to 8 bits at the
last two steps, we can decrease the peak tuple length to 176 bits, thus in total requiring 704
MBytes, or aggressively trim to 4 bits, reaching 500 MBytes. However, further reductions are
more expensive. Using 224 instead of 225 tuples would cause the computational penalty factor
of 210, and factor of 220 for using 220 tuples (q = 1/32). We summarize that for large memory
reductions the computational penalty would be prohibitive even for adversaries equipped with a
number of parallel computational cores.

5.5. Summary—Here we summarize the security results on Equihash and our security
claims.

It is known that the list must contain at least 2
n

2k tuples for the solution to the 2k-XOR problem
to exist with probability close to 1.63 Since the list entries in Equihash are efficiently generated,
this is only a lower bound on the computational complexity of any Equihash-solving algorithm.

The lowest computational complexity for the 2k-XOR problem is still given by Wagner’s
algorithm.63 We conjecture that no faster algorithm will be found in the near future. We also

18
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

LEDGER VOL 2 (2017) 1-30

expect that in the random oracle model the Equihash problem can not be solved with fewer
operations than the 2k-XOR problem if we count memory access as an operation with cost 1,
which forms the base of the optimization-free. A straightforward implementation of Wagner’s
algorithm for Equihash requires more memory for the last steps, and there are several possible
optimizations to make the memory use more even. One of them is given in Proposition 2, but we
admit that some other modifications with constant factor of memory reduction are possible.

If we ignore the small optimizations and consider a list element as an atomic memory cell,
then there is a family of algorithms that trade the memory required by the Wagner’s algorithm for
computational complexity. For Wagner’s the reduction in memory results in the tradeoff given by
Propositions 4 and 5, and the increase in memory allows many more solutions in the reduced
amortized cost (Proposition 3). The algorithm-binding requirement makes the first tradeoff
steeper (Proposition 6) and the second one impossible. We conjecture that all these algorithms
are optimal, which forms the base of our tradeoff steepness requirement.

Compared to proofs-of-space, the time-space tradeoff for Equihash comes from the public
scrutiny but the time penalty is significant even for small reductions.35 In contrast, the time
penalties in Dziembowski et al. have provable lower bounds, but they apply only after reductions
by the O(logN) factor and more, with N being the graph size.35

We do not claim security against parallel attacks, as the sorting procedure within Wagner’s
algorithm admits a number of parallel implementations (see next section for details). However,
we expect that any practical parallel implementation would have to have very high memory
bandwidth, which is currently out of reach for GPU and FPGA. The question whether an efficient
parallel ASIC implementation exists remains open.

5.6. Future cryptanalysis—New tradeoffs for Wagner’s algorithm may change the security
level of our scheme. In our model, we consider it a tradeoff attack if it becomes possible to
significantly reduce C(q) for any q. We note that the model does not distinguish the different
types of memory, thus a practical speed up coming from using less RAM but much more (say)
SSD memory would not be considered a break.

6. Parallelism

6.1. Parallelized implementations on CPU and GPU—It is rather easy to analyze Wagner’s
algorithm from the parallelism point of view, since it consists of well-known procedures: batch
hashing and collision search via sorting.22 Suppose we have p processors with M(n,k) shared
memory. The hashing step is straightforward to parallelize: the processors merely fill their own
block of memory.

Parallel sorting algorithms have been explored for decades, and full exposition of these
results is beyond the scope of this work. Whereas the quicksort is traditional choice for single-
thread applications, a number of its variations as well as that of bucket sort, radix sort, sample
sort, and many others have been proposed, as they all differ in scalability, computational time,
communication complexity, and memory bandwidth. The implementations on a CPU, a multi-
core cluster, a GPU, and even FPGA have been reported.39, 64

Proof of Proposition 7 For our purpose a modification of bucket sort, also called a sample sort,
suffices. The idea is the following (for the sake of simplicity assume that p is a power of 2). Let

19
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

LEDGER VOL 2 (2017) 1-30

us denote the total number of tuples by N. We partition the entire memory into p2 equal cells and
represent it as a (p× p) matrix M[i, j]. At the first step the processors operate row-wise. They
generate the hashes and place them in one of p cells according to the leading log p bits. This
takes time N/p. Thus column j has only entries starting with j (in the bit representation), so
there is no collision between the entries from different columns. Then the processors operate
column-wise and sort the columns simultaneously. Then each processor goes over the sorted
column, identifies collisions, and overwrites the column with placing the collisions into different
buckets, so now row j has only entries starting with j. At the next step the processors operate
row-wise, and so on. This method requires a small buffer to store the collisions, but due to
uniformity of entries it can be rather small (1% in our experiments).

Sorting each column with quicksort requires O(N
p log N

p) time, and this can be done indepen-
dently for each step of the algorithm. Therefore each collision search step of Wagner’s algorithm
is faster by the factor

p logN
log N

p

=
p

1− logN p
.

We note that each processor must have access to one entire column and one entire row, so that
it is not possible to restrict a processor to its own memory. Therefore, memory conflicts are
unavoidable, and the memory chip bandwidth becomes the bottleneck as p increases.

The total bandwidth is calculated as follows. Assuming that the amount of memory operations
in sorting is (almost) a linear function of array length, we get that if one core needs R memory
reads/writes to sort N entries, then p cores need R/p operations each. In addition, the cores must
distribute the collisions into different buckets, spending O(N) memory operations for that. If the
running time decreases by the factor of p, then the bandwidth grows at least by the same factor.

This ends the proof.
6.2. Parallel sorting in practice—The observable speedup on multi-core CPU and GPU

is not that big. The fastest GPU sortings we are aware of have been reported in Merrill and
Grimshaw, where radix sort was implemented and tested on a number of recent GPUs.50 The
best performance was achieved on GTX480, where 230 32-bit keys were sorted in 1 second.8

The same keys on the 3.2 GHz Core-i7 were sorted with rate 228 keys per second, i.e. only 4
times as slow.58 Thus the total advantage of GPU over CPU is about the factor of 4, which is
even smaller than bandwidth ratio (134 GB/s in GTX480 vs 17 GB/s for DDR3). This supports
our assumption of very limited parallelism advantage due to restrictions of memory bandwidth
(Satish also mentions high GPU memory latency as a slowing factor).58

6.3. Parallel sorting on ASICs—We have subdivided this section into three parts: ASIC
implementation that is not quite efficient, mesh-based parallel sorting, and area as prohibitive
factor.

6.3.1. ASIC implementation that is not quite efficient—An anonymous reviewer suggested the
following ASIC architecture for Equihash. Consider an ASIC hashing chip that performs about
20 GHash/sec. From the Bitcoin mining hardware we estimate it as an equivalent of 50 MB of
DRAM.27, 38 The chip is supposed to solve the PoW with n = 144,k = 5, i.e. using 700 MB of
RAM. Therefore the chip area is small compared to the RAM area. The reviewer wonders if it is
possible to fully utilize the hashing capacity of the chip in this setting.

Our answer is no. Indeed, the Equihash parameters imply the total list length of 225 entries.
The total number of hash calls per solution (without the difficulty filter) is 227.5, i.e. about 200

20
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

LEDGER VOL 2 (2017) 1-30

MHashes. Thus to match the hashing rate the ASIC must produce 100 solutions per second,
and thus make 500 sortings of 225 entries per second. The hypothetical sorting rate is about
231 keys per second, or 10 times higher than GTX480 does for 32+128-bit keys. The necessary
bandwidth thus can reach 1 TB/sec, which is not reported yet for any memory chip, even for
most advanced GPU.9 Even if it were the case, the highest reported bandwidth applies to large (a
few GB) memory chips, for which it is not so hard to place sufficiently many reading pins to get
the bandwidth. For smaller chips (700 MB) we presume it to be much harder.

We conclude that the proposed ASIC architecture would face the memory bandwidth limit
quickly. A smaller hashing chip would be more suitable and indeed would probably become
a reasonable ASIC implementation. However, the memory will still be the dominating cost in
producing such ASICs, as the memory will dominate the area requirements.

6.3.2. Mesh-based parallel sorting—Now we consider a more promising ASIC implementa-
tion of Equihash, which utilizes the state of the art for parallel sorting algorithms.

Parallel algorithms for sorting have been explored since late 1960s, but most of the results
remained theoretical and were not connected well with potential implementations. Existing
algorithms and their analysis can be partitioned into two groups: those that take into account the
wire length and bandwidth, and those that do not.

We illustrate the importance of these issues on the following example. Let the array X []

consist of N elements of b bits each. The most straightforward approach to sort the array would
be to assign a processor to each element x and count the number of elements greater than x
simultaneously for all x, then relocate x to its position in the sorted array. Assuming no memory
conflicts, this can be done in time N using N processors, so the time-area product is proportional
to N2.

This naive approach can be improved in two directions. First, the running time can be
decreased significantly. Most of standard sorting algorithms (mergesort, quicksort) were found to
be parallelizable due to their divide-and-conquer nature, but the internal merge step was apparently
difficult to handle, and optimal algorithms were not found till the late 1980s. Eventually, it
was demonstrated that fixed-length integers can be sorted in sublogarithmic time on a sublinear
number of processors, thus giving the area-time complexity of order O(N). In turn, the general
sorting problem can be solved with a superlinear number of processors in sublogarithmic time,
thus having complexity O(N log1+ε N) almost reaching the time-area lower bound O(N logN).
These results and the survey of previous attempts can be found in Rajasekaran and Reif.57 All
these algorithms assume random memory access, which make them more suitable for GPUs than
ASICs. For example, the butterfly networks that can sort an array in logarithmic time, were found
to require the area of at least O(N2),15 so the area-time product is at least O(N2 logN).

The more promising way to get an ASIC-efficient implementation is to restrict the inter-
processor communication. We require that a processor does not make a cross-memory request
in order to save the area for wires. There exists a group of parallel algorithms, which sort the
array so that the processors work with a few local memory cells only and communicate only to
its neighbors. The simplest of them is the so called odd-even transposition sort, which operates
in N steps as follows:
• On odd steps, sort pairs (X [2i],X [2i+1]) for every i.
• On even steps, sort pairs (X [2i−1],X [2i]) for every i.

Its time-area product is O(N2), but the data exchange is local so that it can be implemented

21
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

LEDGER VOL 2 (2017) 1-30

on an ASIC with relatively little wire overhead. It is possible to do better by the quadratic-
mesh algorithm by Lang et al., which was advocated by Bernstein to speed up the NFS integer
factorization algorithm in Bernstein (2001).46, 21 The algorithm needs the memory arranged
as a mesh of dimension

√
N×
√

N. Each memory slot is assigned with a processor, which is
connected to the four neighbors at the mesh. There could be different sorting orders on the mesh:
from left to right and then from upper row to lower row; from top to bottom and then from left
column to right column; the snakelike order (odd rows are sorted from left to right, and even
rows from right to left) and so on. The algorithm in Lang et al. can sort in any such order,46 and
for the former one it works recursively as follows:
• Sort each quadrant (upper ones from left to right, lower ones from right to left).
• Sort columns from top to bottom in parallel using odd-even-transposition algorithm.
• Sort rows in the snakelike order.
• Sort columns from top to bottom.
• Sort rows from left to right.

As the last four steps take
√

N time each, we get that the time T (N) complexity of the algorithm
fulfills the equation

T (N) = T (N/4)+4
√

N.

It implies that T (N)≈ 8
√

N. Thus the time-area product of sorting is O(N3/2). The wires are
very short, so we think that the real complexity would be close to this number. Since sorting with
1 processor takes time proportional to O(N logN) (or N if we sort constant-length numbers with
radix sort), the advantage ranges from O(

√
N) to O(

√
N logN).

These asymptotic estimates are not precise enough to answer decisively if the ASIC imple-
mentation of such sorting algorithm would worth the design costs, as the hidden constant factor
may make the advantage negligible.

In order to estimate the time and area costs more precisely, we turn to the hardware cost
estimates made in Geiselmann and Steinwandt and in Lenstra et al. regarding Bernstein’s scheme
in Bernstein (2001).37, 47, 21 For sorting 26-bit numbers and 8-transistor RAM cells they estimate
the processor to take between 2000 and 2500 transistors, so that the area increase due to the
use of processors is about the factor of 10 or 12. For smaller memory units (e.g. DRAM) the
processors would be accordingly smaller too. Each step would take 2 cycles then.

For the concrete parameter set (n = 144,k = 5, 225 entries) we thus expect that the imple-
mentation of the parallel-mesh algorithm would require a 10-times bigger chip (equivalent of 5
GB RAM), but would finish after 8 ·212.5+1 = 216.5 cycles, or in 0.1 milliseconds. We recall that
GTX-480 sorts this number of elements using 500 MB of RAM in 150 milliseconds, or 1500
times as slow.50 Thus the cost advantage of ASIC would be at most the factor of 150. In fact,
producing collisions and hashing the initial counters would add additional slowdown to the ASIC
performance and the actual advantage would be even smaller.

We conclude that Equihash can be implemented on ASICs with the time advantage of the
factor of about 1000 over GPU and CPU, but the chip would be 10-12 times bigger than a
non-parallel ASIC implementation, and for the parameters n = 144,k = 5 would be at least as
big as 8GB-RAM chip.

6.3.3. Area as prohibitive factor—Despite a large cost reduction, we actually expect that the
high design costs would prohibit such implementations. Indeed, an 8 GB single chip would

22
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

LEDGER VOL 2 (2017) 1-30

require significant area, and the probability that some logic is implemented with error becomes
very high.

One may argue that even unreliable chips may still produce collisions. Indeed, an error in the
hash generation does not affect the result unless this particular hash value is part of the solution
(which is unlikely). However, we expect that due to the recursive nature of our sorting algorithm
any comparison error will diffuse quickly and affect a large part of the output array. For instance,
it was demonstrated that any sorting algorithm must make Ω(N logN + kN) comparisons to cope
with k comparison mistakes.45 Therefore, we may hope to keep sorting work in the same time
for a logarithmic number of corrupted chips only. For large chips this assumption may be too
optimistic.

7. Further discussion

Optimizations with more memory— Proposition 2 illustrated that the memory amount can be
slightly reduced at the cost of small computational overhead. From another perspective, the
increase in memory use results in small computational savings.

In addition to more efficient memory access, the sorting procedure can be optimized as well.
We have experimented with various counting sort algorithms and observed that increased memory
use admits faster sorting and thus faster Equihash solvers, although within a small constant
factor. This does not contradicts the optimization-free property per se, but indicates that actual
implementations may not precisely follow the memory and time requirements of Proposition 2.
Also if implementors wish to support the choice n,k at run-time, the simplest and/or fastest code
may not be the most memory-optimized.

8. Acknowledgement

Various people from the Bitcoin community, in particular Gregory Maxwell for some of the
properties that a useful PoW should satisfy. We thank John Tromp for reporting some mistakes
in the discussion on Momentum and clarifying some points in the Cuckoo cycle scheme.

9. Conclusion

We have described a general approach to construction of asymmetric proofs-of-work from hard
problems. Given a list of requirements for an asymmetric and ASIC-resistant PoW we identified
the generalized birthday problem as the one with a scrutinized algorithms decently studied for
tradeoffs.

We showed that the running time of the generalized birthday algorithm can be amortized
over multiple solutions. We have introduced a technique called algorithm binding that prevents
solution amortization by making solutions almost unique. Moreover, we investigated the time-
memory tradeoffs and demonstrated that the new technique gives time-space tradeoffs that are
better for the defender at negligible verification overhead. Thanks to the solution length parameter
k in the generalized birthday problem, we may vary the tradeoffs so we suggest a wide range of
time, memory, and tradeoff parameters for a variety of applications.

We also demonstrated that even though Wagner’s algorithm is inherently parallel, any parallel
implementation of its components quickly exhaust available memory bandwidth and thus has

23
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

LEDGER VOL 2 (2017) 1-30

only limited advantage while running on a GPU or ASIC. Altogether, we get a memory-hard,
ASIC- and botnet-resistant PoW with extremely fast verification and very small proof size.

To demonstrate the practicality of our solution, we implemented our PoW Equihash on a
PC for a 700-MB proof. A reference, non-optimized implementation runs in 15 seconds with 1
thread, verification takes microseconds, and the proof length is tiny, just 120 bytes.

Notes and References
1 The actual amount of memory in Dwork et al. (2005) was 32 MB, which is not that “hard” by modern

standards.34

2 The project webpage (Tromp) claims that Andersen’s optimizations are now integrated into the miner, but
the performance numbers are mainly unchanged since before the cryptanalysis appeared.61

3 An increase in the AT cost for ASICs can be illustrated as follows. A compact 50-nm DRAM implementa-
tion takes 500 mm2 per GB, which is equivalent to about 15000 10 MHz SHA-256 cores in the best Bitcoin
40-nm ASICs and is comparable to a CPU size.38, 27 Therefore, an algorithm requiring 1 GB for 1 minute
would have the same AT cost as an algorithm requiring 242 hash function calls, whereas the latter can not
finish on a PC even in 1 day. In other words, the use of memory can increase the AT cost by a factor of 1000
and more at the same time cost for the desktop user.

4 The actual ratio depends on the hash function and the sorting algorithm.
5 This result was independently obtained in Nikolic and Sasaki.52

6 https://github.com/khovratovich/equihash

7 A rigorous formula is difficult to extract from Kirchner’s manuscript.
8 Closer to our n = 144,k = 5 proposal, where 48-bit keys are sorted together with 128-bit values, GTX480

sorts 32+128-bit entries with rate 227.5 per second, but there is no such benchmark in Satish.58

9 The exact value highly depends on the sorting method, so we do not give a single number for our scheme.
10 “Password Hashing Competition.” (2015) (Accessed 29 January 2017) https://password-hashing.
net/

11 Abadi, M., Burrows, M., Wobber, T. “Moderately Hard, Memory-Bound Functions.” (2003) http://www.
isoc.org/isoc/conferences/ndss/03/proceedings/papers/2.pdf

12 Alwen, J., Blocki, J. “Efficiently Computing Data-Independent Memory-Hard Functions.” Lecture Notes in
Computer Science 9815 (2016) 241–271
13 Alwen, J., et al. “On the Memory-Hardness of Data-Independent Password-Hashing Functions.” Cryptology
ePrint Archive, Report 2016/783 (2016) (Accessed 29 January 2017) http://eprint.iacr.org/2016/783
14 Andersen, D. “A Public Review of Cuckoo Cycle.” (2014) (Accessed 29 January 2017) http://www.cs.
cmu.edu/~dga/crypto/cuckoo/analysis.pdf

15 Avior, A., Calamoneri, T., Even, S., Litman, A., Rosenberg, A. L. “A Tight Layout of the Butterfly Network.”
Theory Comput. Syst. 31.4 (1998) 475–488
16 Back, A. “Hashcash – A Denial of Service Counter-Measure.” (2002) (accessed 29 January 2017) http:
//www.hashcash.org/papers/hashcash.pdf

17 Beame, P., Borodin, A., Raghavan, P., Ruzzo, W. L., Tompa, M. “Time-Space Tradeoffs for Undirected
Graph Traversal.” (1990) 429–438 doi:10.1109/FSCS.1990.89563
18 Becker, A., Coron, J., Joux, A. “Improved Generic Algorithms for Hard Knapsacks.” Lecture Notes in
Computer Science 6632 (2011) 364–385
19 Becker, A., Joux, A., May, A., Meurer, A. “Decoding Random Binary Linear Codes in 2n/20: How 1+1= 0
Improves Information Set Decoding.” Lecture Notes in Computer Science 7237 (2012) 520–536 doi:10.1007/
978-3-642-29011-4 31

24
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

https://github.com/khovratovich/equihash
https://password-hashing.net/
https://password-hashing.net/
http://www.isoc.org/isoc/conferences/ndss/03/proceedings/papers/2.pdf
http://www.isoc.org/isoc/conferences/ndss/03/proceedings/papers/2.pdf
http://eprint.iacr.org/2016/783
http://www.cs.cmu.edu/~dga/crypto/cuckoo/analysis.pdf
http://www.cs.cmu.edu/~dga/crypto/cuckoo/analysis.pdf
http://www.hashcash.org/papers/hashcash.pdf
http://www.hashcash.org/papers/hashcash.pdf

LEDGER VOL 2 (2017) 1-30

20 Bellare, M., Micciancio, D. “A New Paradigm for Collision-Free Hashing: Incrementality at Reduced Cost.”
Lecture Notes in Computer Science 1233 (1997) 163–192 doi:10.1007/3-540-69053-0 13

21 Bernstein, D. J. Circuits for integer factorization: a proposal. Technical report (2001) https://cr.yp.
to/papers/nfscircuit.pdf

22 Bernstein, D. J. “Better Price-Performance Ratios for Generalized Birthday Attacks.” 7 (2007) 160

23 Bernstein, D. J., Lange, T., Niederhagen, R., Peters, C., Schwabe, P. “FSBday.” Lecture Notes in Computer
Science 5922 (2009) 18–38 doi:10.1007/978-3-642-10628-6 2

24 Biryukov, A., Khovratovich, D. “Tradeoff Cryptanalysis of Memory-Hard Functions.” (2015) http://
eprint.iacr.org/2015/227

25 Biryukov, A., Khovratovich, D. “Argon2: new generation of memory-hard functions for password hashing
and other applications.” (2016) (Accessed 29 Janaury 2017) https://www.cryptolux.org/images/0/0d/
Argon2.pdf

26 Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J. A., Felten, E. W. “SoK: Research Perspectives
and Challenges for Bitcoin and Cryptocurrencies.” (2015) 104–121

27 Cawrey, D. “Avalon ASIC’s 40nm Chip to Bring Hashing Boost for
Less Power.” (2014) (Accessed 29 January 2017) http://www.coindesk.com/
avalon-asics-40nm-chip-bring-hashing-boost-less-power/

28 Crosby, S. A., Wallach, D. S. “Denial of Service via Algorithmic Complexity Attacks.” 2 (2003)

29 Dean, D., Stubblefield, A. “Using Client Puzzles to Protect TLS.” 42 (2001)

30 Denneman, F. “Memory Deep Dive: Memory Subsystem Bandwidth.” (2015) (Accessed 29 January 2017)
http://frankdenneman.nl/2015/02/19/memory-deep-dive-memory-subsystem-bandwidth/

31 Dinur, I., Dunkelman, O., Keller, N., Shamir, A. “Efficient Dissection of Composite Problems, with Ap-
plications to Cryptanalysis, Knapsacks, and Combinatorial Search Problems.” Lecture Notes in Computer
Science 7417 (2012) 719–740 doi:10.1007/978-3-642-32009-5 42

32 Dwork, C., Goldberg, A., Naor, M. “On Memory-Bound Functions for Fighting Spam.” Lecture Notes in
Computer Science 2729 (2003) 426–444

33 Dwork, C., Naor, M. “Pricing via Processing or Combatting Junk Mail.” Lecture Notes in Computer Science
740 (1992) 139–147

34 Dwork, C., Naor, M., Wee, H. “Pebbling and Proofs of Work.” Lecture Notes in Computer Science 3621
(2005) 37–54

35 Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K. “Proofs of Space.” Lecture Notes in Computer
Science 9216 (2015) 585–605 doi:10.1007/978-3-662-48000-7 29

36 Fortnow, L. “Time-Space Tradeoffs for Satisfiability.” J. Comput. Syst. Sci. 60.2 (2000) 337–353 doi:10.
1006/jcss.1999.1671

37 Geiselmann, W., Steinwandt, R. “A Dedicated Sieving Hardware.” Lecture Notes in Computer Science 2567
(2003) 254–266

38 Giridhar, B., et al. “Exploring DRAM Organizations for Energy-efficient and Resilient Exascale Memories.”
(2013) 23–35

39 Helman, D. R., Bader, D. A., JáJá, J. “A Randomized Parallel Sorting Algorithm with an Experimental
Study.” J. Parallel Distrib. Comput. 52.1 (1998) 1–23 doi:10.1006/jpdc.1998.1462

40 Hopcroft, J. E., Paul, W. J., Valiant, L. G. “On Time Versus Space.” J. ACM 24.2 (1977) 332–337

41 Howgrave-Graham, N., Joux, A. “New Generic Algorithms for Hard Knapsacks.” Lecture Notes in Com-
puter Science 6110 (2010) 235–256

42 Huang, D. Y., et al. “Botcoin: Monetizing Stolen Cycles.” (2014)

25
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

https://cr.yp.to/papers/nfscircuit.pdf
https://cr.yp.to/papers/nfscircuit.pdf
http://eprint.iacr.org/2015/227
http://eprint.iacr.org/2015/227
https://www.cryptolux.org/images/0/0d/Argon2.pdf
https://www.cryptolux.org/images/0/0d/Argon2.pdf
http://www.coindesk.com/avalon-asics-40nm-chip-bring-hashing-boost-less-power/
http://www.coindesk.com/avalon-asics-40nm-chip-bring-hashing-boost-less-power/
http://frankdenneman.nl/2015/02/19/memory-deep-dive-memory-subsystem-bandwidth/

LEDGER VOL 2 (2017) 1-30

43 Jakobsson, M., Juels, A. “Proofs of Work and Bread Pudding Protocols.” IFIP Conference Proceedings 152
(1999) 258–272

44 Kirchner, P. “Improved Generalized Birthday Attack.” IACR Cryptology ePrint Archive 2011 (2011) 377

45 Lakshmanan, K. B., Ravikumar, B., Ganesan, K. “Coping with Erroneous Information while Sorting.” IEEE
Trans. Computers 40.9 (1991) 1081–1084

46 Lang, H., Schimmler, M., Schmeck, H., Schröder, H. “Systolic Sorting on a Mesh-Connected Network.”
IEEE Trans. Computers 34.7 (1985) 652–658

47 Lenstra, A. K., Shamir, A., Tomlinson, J., Tromer, E. “Analysis of Bernstein’s Factorization Circuit.” Lec-
ture Notes in Computer Science 2501 (2002) 1–26

48 “Litecoin: Mining hardware comparison.” (2015) (Accessed 29 January 2017) https://litecoin.info/
Mining_hardware_comparison

49 Lorimer, D. “Momentum – A Memory-Hard Proof-of-Work via Finding Birthday Collisions.” (2014) (Ac-
cessed 29 January 2017) http://www.hashcash.org/papers/momentum.pdf

50 Merrill, D., Grimshaw, A. “High Performance and Scalable Radix Sorting: A case study of implementing
dynamic parallelism for GPU computing.” Parallel Processing Letters 21.02 (2011) 245–272 doi:10.1142/
S0129626411000187

51 Minder, L., Sinclair, A. “The extended k-tree algorithm.” (2009) 586–595

52 Nikolic, I., Sasaki, Y. “Refinements of the k-tree Algorithm for the Generalized Birthday Problem.” Lecture
Notes in Computer Science 9453 (2015) 683–703

53 Nivasch, G. “Cycle Detection Using a Stack.” Inf. Process. Lett. 90.3 (2004) 135–140 doi:10.1016/j.ipl.
2004.01.016

54 Park, S., Pietrzak, K., Alwen, J., Fuchsbauer, G., Gazi, P. “Spacecoin: A Cryptocurrency Based on Proofs
of Space.” IACR Cryptology ePrint Archive 2015 (2015) 528 http://eprint.iacr.org/2015/528

55 Percival, C. “Stronger Key Derivation Via Sequential Memory-Hard Functions.” (2009) (Accessed 29 Jan-
uary 2017) http://www.tarsnap.com/scrypt/scrypt.pdf

56 Pippenger, N. “Superconcentrators.” SIAM J. Comput. 6.2 (1977) 298–304 doi:10.1137/0206022

57 Rajasekaran, S., Reif, J. H. “Optimal and Sublogarithmic Time Randomized Parallel Sorting Algorithms.”
SIAM J. Comput. 18.3 (1989) 594–607

58 Satish, N., et al. “Fast Sort on CPUs and GPUs: A Case for Bandwidth Oblivious SIMD Sort.” SIGMOD
’10 (2010) 351–362

59 Schroeppel, R., Shamir, A. “A T = O(2n/2),S = O(2n/4) Algorithm for Certain NP-Complete Problems.”
SIAM J. Comput. 10.3 (1981) 456–464 doi:10.1137/0210033

60 Shamir, A. “On the Cryptocomplexity of Knapsack Systems.” (1979) 118–129 doi:10.1145/800135.804405

61 Tromp, J. “Cuckoo Cycle: a memory bound graph-theoretic proof-of-work.” (2014) Cryptology ePrint
Archive, Report 2014/059 (Accessed 29 January 2017) http://eprint.iacr.org/2014/059, project web-
page https://github.com/tromp/cuckoo

62 van Oorschot, P. C., Wiener, M. J. “Parallel Collision Search with Cryptanalytic Applications.” J. Cryptol-
ogy 12.1 (1999) 1–28 doi:10.1007/PL00003816

63 Wagner, D. “A Generalized Birthday Problem.” Lecture Notes in Computer Science 2442 (2002) 288–303
doi:10.1007/3-540-45708-9 19

64 Ye, X., Fan, D., Lin, W., Yuan, N., Ienne, P. “High Performance Comparison-Based Sorting Algorithm on
Many-Core GPUs.” (2010) 1–10 doi:10.1109/IPDPS.2010.5470445

26
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

https://litecoin.info/Mining_hardware_comparison
https://litecoin.info/Mining_hardware_comparison
http://www.hashcash.org/papers/momentum.pdf
http://eprint.iacr.org/2015/528
http://www.tarsnap.com/scrypt/scrypt.pdf
http://eprint.iacr.org/2014/059
https://github.com/tromp/cuckoo

LEDGER VOL 2 (2017) 1-30

Appendix

1. Memoryless collision search for expanding functions and analysis of Momentum—The
memoryless collision search algorithm for functions that maps n bits to n bits is well known.53 It
runs in O(2n/2) calls to f . However, it is much less efficient if the domain of f is smaller. For
instance, suppose that f maps n bits to 2n bits (so that only one collision is expected), and we
truncate f (x) to certain n bits to iterate it in the Pollard-rho fashion. Then each found collision
has only 2−n chance to be the right collision, and we have to rerun the algorithm 2n times to find
the right collision. Therefore, the memoryless algorithm runs in O(23n/2) time in this case.

To explore the full time-memory tradeoff, we turn to an alternative view on this collision
search. Finding a collision in an expanding function f mapping n to n+m bits is the same as
finding the golden collision (i.e. one specific collision) in f truncated to n bits. The golden
collision search in a n-bit function has complexity 5 ·23n/2/

√
w if we have enough memory to

store w distinguished points, where a distinguished point has size about 2wn bits.62 For very
small w, this converges to an algorithm with time complexity 9 ·23n/2 for an n-bit function.

Consider now the Momentum PoW, where a single collision in F mapping n bits to 2n bits is
the proof-of-work.49 We immediately obtain the following results.

Proposition 8. There is an algorithm that finds the Momentum PoW in T0 = M0 = O(2n) time
and memory.

Proposition 9. The time increase in the Momentum PoW is a sublinear function of the memory
reduction factor:

T (M0/q) =
√

qT (M0); C(q) =
√

q.

Therefore, the Momentum PoW allows a large reduction in the time-area product as the time
grows slower than the area decreases.

Note that both propositions can be viewed as special cases (k = 1) of Propositions 5 and 6.
2. Generic problem composition—Our primary proposal consists of two independent steps:

Wagner’s algorithm A and the difficulty filter H. We achieved amortization-free and tradeoff
steepness just by manipulating A . Now we consider generic problem composition as a tool
to get steeper tradeoffs and restrict the number of solutions. It can be used when the algorithm
binding method is not applicable.

2.1. Averaging tradeoffs—Our idea is to cascade two (or more) problems so that the solution
to the first is the input to the second. Interestingly, the resulting time-space tradeoff is better for
the verifier than either of original tradeoffs.

Formally let P1 and P2 be two problems with the following properties:
• P1 can be solved in time T with memory M and has strong tradeoffs: any memory

reduction causes a large computational penalty.
• P2 can be solved in time αT and memory M and has a small, fixed number of solutions.

Let us investigate the time-space tradeoffs for P2◦P1. Suppose that C1(q)T is the amortized
cost of finding a solution for P1 given qM memory, and αC2(q)T is the amortized cost of finding
a solution for P2 given qM memory. Then the amortized cost for the composition P2 ◦P1 of
problems is

T (q) =C1(q)T +C2(q)αT.

27
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

LEDGER VOL 2 (2017) 1-30

Since for q = 1 the time complexity is (1+α)T , the computational penalty is computed as

C(q) =
C1(q)
1+α

+
αC2(q)
1+α

For α ≈ 1 we get C(q)> max(C1(q),C2(q))/2, i.e. is at least the half of the largest penalty.
We may want to change the default memory parameters from M to M′, where M′ is the

maximal memory value such that all memory reductions come at cost above some threshold. This
is illustrated in Fig. 5 with α = 1: both P1 and P2 need time T and memory M to be solved but
have different tradeoffs. It is worth to increase M to M′ so that the decrease from M′ would be
penalized by P1 whereas the increase from M′ would be penalized by P2.

Memory

Amortized
cost

P1

P2

P2 ◦ P1T

M

2T

M ′

3T + ε

M ′′

Fig. 5. Time-memory tradeoff for the composition of hard problems with different tradeoffs.

If α is too large or too small, the tradeoff will be largely determined by one of the two
problems. In order to balance them, we suggest iterating the faster problem 1/α times.

2.2. Composition with the generalized birthday problem—Let us investigate which problems
can be composed with the generalized birthday problem. The latter with parameters (n,k) can be
solved with 2k+ n

k+1 bytes of memory and time equivalent to 21+logk+ n
k+1 calls to the hash function

H. Thus the gap between the time and memory exponents is very close; in other words we need
as much time as if we would hash the entire memory a few times.

For the second problem P2 we have to choose the parameters so that the memory require-
ments 2l bytes would be very close to the memory needed by Wagner’s algorithm, i.e.

l ≈ k+
n

k+1
.

Secondly, the time complexity must be of the same order of magnitude, i.e. if solving P2 with 2l

memory requires 2β l time, then

β ≈
1+ logk+ n

k+1

k+ n
k+1

.

Therefore, β must be slightly smaller than 1.
We have searched over several hard problems for such ratio, but the β value is often much

larger. For instance, the best information set decoding the algorithm cited in Becker et al. (2012)
on random linear codes of length n with the full decoding setting have time complexity 20.1n

and space complexity 20.076n.19 If we set n = 400, then the memory requirements would be 230

28
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

LEDGER VOL 2 (2017) 1-30

and time would be 240, which is much higher than 228 time we get for the generalized birthday
problem with 230 memory. A better candidate might be the McEliece decoding parameters,
for which the algorithm in Becker et al. (2012) obtains the time complexity 20.067n and space
complexity 20.59n.19

Although the information set decoding algorithms are well studied, we found the hard
knapsack problem a bit more scrutinized.59, 41 In the further text we explain the problem, show
how to instantiate a proof-of-work with it, and describe existing time-memory tradeoffs.

3. Hard knapsack problem and proof-of-work based on it—The computational knapsack
problem is described as follows. We are given positive numbers a1,a2, . . ., ak,S of length n and
have to find εi ∈ {0,1} such that

ε1a1 + ε2a2 + . . .+ εkak = S.

The problem is known to be NP-hard, though for a subset of parameters a fast algorithm exists.41

If k < 0.94n a solution can be found fast using lattice reduction algorithms. Similar algorithms
apply when k is much larger than, i.e. there are multiple solutions. The hardest setting is k = n in
Howgrave-Graham and Joux, where the best algorithms are exponential.41

In order to construct a proof-of-work protocol, we reformulate the problem similarly to the
PoW based on the generalized birthday. We consider the hash function output H(i) as an integer
of n bits. We have to find εi ∈ {0,1} such that

ε1H(1)+ ε2H(2)+ . . .+ εnH(n) = H(n+1) (mod 2n)

and ∑i εi = n/2.
The best existing algorithms so far have been proposed in Howgrave-Graham and Joux and

Becker et al. (2011).41, 18 Though the latter algorithm is asymptotically better, for practical n it
is outperformed by the algorithm from the former.41

The algorithm in Howgrave-Graham and Joux works as follows:
(1) Choose integer M ≈ 20.51n and random R < M. Let us denote H(n+1) by S.
(2) Solve the original knapsack modulo M with S = R with a set of solutions L1 and ∑i εi =

n/4.
(3) Solve the original knapsack modulo M with S = S−R with a set of solutions L2 and

∑i εi = n/4.
(4) Merge two solution sets and filter out pairs of solutions that activate the same εi.

The smaller knapsacks are solved with the algorithm from Schroeppel and Shamir so that the
20.31n solutions are produced in time 20.31n.59 Then the solutions are merged with the total
complexity 20.337n (corrected value from Becker et al. (2011)) and 20.3 memory.18

The Schroeppel and Shamir algorithm works similarly: it chooses M = 2n/2, then splits the
knapsack in two and solves the left part for M and the right part for S−M, then merges the two
solutions.59

Reducing memory by q results into smaller lists L1,L2 and thus the quadratic decrease in the
success rate. Since the time complexity per iteration also reduces by q, we obtain the simple
time-memory tradeoff T M = 20.63n up to small M.18 The best memoryless algorithm found so
far has the complexity 20.72n.18

It is reported that the algorithm above runs for n = 96 in 15 minutes and requires 1.6 GB of
RAM.18 This memory requirement corresponds to n = 192,k = 7 in the generalized birthday

29
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

LEDGER VOL 2 (2017) 1-30

algorithm, where the time complexity is around 228 hash function calls or about 2 minutes on a
single thread. Thus we conclude that these problems couple well, but to equalize the time we
would have to run the problem P1 several times.

30
ISSN 2379-5980 (online)

DOI 10.5195/LEDGER.2017.48

https://creativecommons.org/licenses/by/4.0/

