Energy-Efficient Mining on a Quantum-Enabled Blockchain Using Light
DOI:
https://doi.org/10.5195/ledger.2019.143Abstract
We outline a quantum-enabled blockchain architecture based on a consortium of quantum servers. The network is hybridised, utilising digital systems for sharing and processing classical information combined with a fibre-optic infrastructure and quantum devices for transmitting and processing quantum information. We deliver an energy efficient interactive mining protocol enacted between clients and servers which uses quantum information encoded in light and removes the need for trust in network infrastructure. Instead, clients on the network need only trust the transparent network code, and that their devices adhere to the rules of quantum physics. To demonstrate the energy efficiency of the mining protocol, we elaborate upon the results of two previous experiments (one performed over 1km of optical fibre) as applied to this work. Finally, we address some key vulnerabilities, explore open questions, and observe forward-compatibility with the quantum internet and quantum computing technologies.
References
Acın, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V. “Device-Independent Security of Quantum Cryptography against Collective Attacks.” Phys. Rev. Lett. 98 230501 (2007) https://doi.org/10.1103/PhysRevLett.98.230501.
Acın, A., Gisin, N., Masanes, L. “From Bell’s Theorem to Secure Quantum Key Distribution.” Phys. Rev. Lett. 97 120405 (2006) https://doi.org/10.1103/PhysRevLett.97.120405.
Aguero, M. B., Hnilo, A. A., Kovalsky, M. G. “Time-Resolved Measurement of Bell Inequalities and the Coincidence Loophole.” Phys. Rev. A 86 052121 (2012) https://doi.org/10.1103/PhysRevA.86.052121.
Ansmann, M., et al. “Violation of Bell’s inequality in Josephson Phase Qubits.” Nature 461 504–506 (2009) https://doi.org/10.1038/nature08363.
Antonopoulos, A. M. Mastering Bitcoin: Unlocking Digital Cryptocurrencies. O’Reilly Media (2015).
Aspect, A., Dalibard, J., Roger, G. “Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities.” Phys. Rev. Lett. 49 91 (1982) https://doi.org/10.1103/PhysRevLett.49.91.
Aspelmeyer, M., Jennewein, T., Pfennigbauer, M., Leeb, W. R., Zeilinger, A. “Long-Distance Quantum Communication with Entangled Photons Using Satellites.” IEEE J. Sel. Top. Quantum Electron. 9 1541–1551 (2003) https://doi.org/10.1109/JSTQE.2003.820918.
Autebert, C., et al. “Electrically Injected Source of Photon Pairs at Room Temperature: Device Performances and Entanglement Generation.” 2015 European Conference on Lasers and Electro-Optics – European Quantum Electronics Conference JSV Poster Session (2015) https://www.osapublishing.org/abstract.cfm?URI=EQEC-2015-JSV_P_10.
Bancal, J. D., Brunner, N., Gisin, N., Liang, Y. C. “Detecting Genuine Multipartite Quantum Nonlocality: A Simple Approach and Generalization to Arbitrary Dimensions.” Phys. Rev. Lett. 106 020405 (2011) https://doi.org/10.1103/PhysRevLett.106.020405.
Baraniuk, C. “Bitcoin Energy Use in Iceland Set to Overtake Homes, Says Local Firm.” BBC News (2018) (accessed 5 June 2019) https://www.bbc.com/news/technology-43030677.
Bell, J. S. “On the Einstein-Podolsky-Rosen Paradox.” Physics 1 195 (1964) https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195.
Bell, J. S. Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press (1987).
Bennet, A. J., et al. “Arbitrarily Loss-Tolerant Einstein-Podolsky-Rosen Steering Allowing a Demonstration over 1 km of Optical Fiber with No Detection Loophole.” Phys. Rev. X 2 031003 (2016) https://doi.org/10.1103/PhysRevX.2.031003.
Bennett, C. H., Brassard, G. “Quantum Cryptography: Public Key Distribution and Coin Tossing.” In Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, Dec 9-12, 1984 175–179 (1984).
Bennett, C. H., Brassard, G., Cr´epeau, C., Jozsa, R., Peres, A., Wootters, W. K. “Teleporting an Unknown Quantum State Via Dual Classical and Einstein–Podolsky–Rosen Channels.” Phys. Rev. Lett. 70 1895 (1993) https://doi.org/10.1103/PhysRevLett.70.1895.
Bogdanov, S. I., et al. “Ultrabright Room-Temperature Sub-Nanosecond Emission from Single Nitrogen- Vacancy Centers Coupled to Nanopatch Antennas.” Nano Lett. 18 4837–4844 (2018) https://doi.org/10.1021/acs.nanolett.8b01415.
Bourgoin, J.-P., et al. “Free-Space Quantum Key Distribution to a Moving Receiver.” Optics Express 23 33437–33447 (2015) https://doi.org/10.1364/OE.23.033437.
Branciard, C., Cavalcanti, E. G., Walborn, S. P., Scarani, V., Wiseman, H. M. “One-Sided Device-Independent Quantum Key Distribution: Security, Feasibility, and the Connection with Steering.” Phys. Rev. A 85 010301(R) (2012) https://doi.org/10.1103/PhysRevA.85.010301.
Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S. “Bell Nonlocality.” Rev. Mod. Phys. 86 419 (2014) https://doi.org/10.1103/RevModPhys.86.419.
Brunner, N., Sharam, J., V´ertesi, T. “Testing the Structure of Multipartite Entanglement with Bell Inequalities.” Phys. Rev. Lett. 108 110501 (2012) https://doi.org/10.1103/PhysRevLett.108.110501.
Cao, C., Carroll, S. M., Michalakis, S. “Space from Hilbert Space: Recovering Geometry from Bulk Entanglement.” Phys. Rev. D 95 024031 (2017) https://doi.org/10.1103/PhysRevD.95.024031.
Chen, T.-Y., et al. “Field Test of a Practical Secure Communication Network with Decoy-State Quantum Cryptography.” Optics Express 17 6540–6549 (2009) https://doi.org/10.1364/OE.17.006540.
Chen, T.-Y., et al. “Metropolitan All-Pass and Inter-City Quantum Communication Network.” Optics Express 18 27217–27225 (2010) https://doi.org/10.1364/OE.18.027217.
Christensen, B. G., et al. “Detection-Loophole-Free Test of Quantum Nonlocality, and Applications.” Phys. Rev. Lett. 111 130406 (2013) https://doi.org/10.1103/PhysRevLett.111.130406.
Chun, H., et al. “Handheld Free Space Quantum Key Distribution with Dynamic Motion Compensation.” Optics Express 25 6784–6795 (2017) https://doi.org/10.1364/OE.25.006784.
Clauser, J. F., Horne, M. A., Shimony, A., Holt, R. A. “Proposed Experiment to Test Local Hidden– Variable Theories.” Phys. Rev. Lett. 23 880–884 (1969) https://doi.org/10.1103/PhysRevLett.23.880.
Croman, K., et al. “On Scaling Decentralized Blockchains.” In Financial Cryptography and Data Security, FC 2016 Springer 106–125 (2016) https://doi.org/10.1007/978-3-662-53357-4_8.
Davoyan, A., Atwater, H. “Quantum nonlinear light emission in metamaterials: broadband Purcell enhancement of parametric downconversion.” Optica 5 608–611 (2018) https://doi.org/10.1364/OPTICA.5.000608.
de Vries, A. “Bitcoin’s Growing Energy Problem.” Joule 2 801–805 (2018) https://doi.org/10.1016/j.joule.2018.04.016.
Decker, C., Seidel, J., Wattenhofer, R. “Bitcoin Meets Strong Consistency.” In ICDCN ’16, Proceedings of the 17th International Conference on Distributed Computing and Networking ACM 1427–1444 (2016) https://doi.org/10.1145/2833312.2833321.
Defago, X., Schiper, A., Urba´n, P. “Total Order Broadcast and Multi-Cast Algorithms: Taxonomy and Survey.” ACM Comput. Surv. (CSUR) 36 372–421 (2004) https://doi.org/10.1145/1041680.1041682.
Deutsch, D. “Quantum Theory, the Church–Turing Principle and the Universal Quantum Computer.” Proceedings of the Royal Society A 400 https://doi.org/10.1098/rspa.1985.0070.
DiVincenzo, P. D. “Quantum Computation.” Science 270 255–261 (1995) https://doi.org/10.1126/science.270.5234.255.
Douceur, J. R. “The Sybil Attack.” In P. Druschel, F. Kaashoek, A. Rowstron (Eds.), Peer-to-Peer Systems, IPTPS 2002 Springer 251–260 (2002) https://doi.org/10.1007/3-540-45748-8_24.
Dwork, C., Lynch, N., Stockmeyer, L. “Consensus in the Presence of Partial Synchrony.” J. ACM 35 288–323 (1988) https://doi.org/10.1145/42282.42283.
Einstein, A., Podolsky, B., Rosen, N. “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?” Phys. Rev. Lett. 47 777 (1935) https://doi.org/10.1103/PhysRev.47.777.
Ekert, A. K. “Quantum Cryptography Based on Bell’s Theorem.” Phys. Rev. Lett 67 661–663 (1991) https://doi.org/10.1103/PhysRevLett.67.661.
Ekert, A., Jozsa, R. “Quantum Computation and Shor’s Factoring Algorithm.” Rev. Mod. Phys. 68 733-753 (1996) https://doi.org/10.1103/RevModPhys.68.733.
Elmabrok, O., Razavi, M. “Wireless Quantum Key Distribution in Indoor Environments.” Journal of the Optical Society of America B 35 197–207 (2018) https://doi.org/10.1364/JOSAB.35.000197.
Evans, D. A., Cavalcanti, E. G., Wiseman, H. M. “Loss-Tolerant Tests of Einstein-Podolsky-Rosen Steering.” Phys. Rev. A 88 022106 (2013) https://doi.org/10.1103/PhysRevA.88.022106.
Extance, A. “The Future of Cryptocurrencies: Bitcoin and Beyond.” Nature 526 21–23 (2015) https://doi.org/10.1038/526021a.
Fedorov, A. K., Kiktenko, E. O., Lvovsky, A. I. “Quantum Computers Put Blockchain Security at Risk.” Nature 563 465–467 (2018) https://doi.org/10.1038/d41586-018-07449-z.
Fedrizzi, A., Herbst, T., Poppe, A., Jennewein, T., Zeilinger, A. “A Wavelength-Tunable Fiber-Coupled Source of Narrowband Entangled Photons.” Optics Express 15 15377–15386 (2007) https://doi.org/10.1364/OE.15.015377.
Fitzi, M., Gisin, N., Maurer, U. “Quantum Solution to the Byzantine Agreement Problem.” Phys. Rev. Lett. 87 217901 (2001) https://doi.org/10.1103/PhysRevLett.87.217901.
Freedman, S. J., Clauser, J. F. “Experimental Test of Local Hidden-Variable Theories.” Phys. Rev. Lett. 28 938 (1972) https://doi.org/10.1103/PhysRevLett.28.938.
Friedman, R. A., Hanggi, E., Ta-Shma, A. “Towards the Impossibility of Non–Signalling Privacy Amplification from Time-Like Ordering Constraints.” arXiv.org (2012) (accessed 6 June 2019) https://arxiv.org/abs/1205.3736v1.
Gallicchio, J., Friedman, A. S., Kaiser, D. I. “Testing Bell’s Inequality with Cosmic Photons: Closing the Setting-Independence Loophole.” Phys. Rev. Lett. 112 110405 (2014) https://doi.org/10.1103/PhysRevLett.112.110405.
Gao, X., Ding, J., Liu, J., Li, L. “Post-Quantum Secure Remote Password Protocol from RLWE Problem.” In Information Security and Cryptology. Inscrypt 2017. Lecture Notes in Computer Science, vol. 10726. Springer 99–116 (2018) https://doi.org/10.1007/978-3-319-75160-3_8.
Gheorghiu, A., Wallden, P., Kashefi, E. “Rigidity of Quantum Steering and One-Sided Device-Independent Verifiable Quantum Computation.” New J. Phys. 19 023043 (2017) https://doi.org/10.1088/1367-2630/aa5cff.
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H. “Quantum Cryptography.” Rev. Mod. Phys. 74 145 (2002) https://doi.org/10.1103/RevModPhys.74.145.
Giustina, M., et al. “Bell Violation Using Entangled Photons Without the Fair-Sampling Assumption.” Nature 497 227–230 (2013) https://doi.org/10.1038/nature12012.
Giustina, M., et al. “Significant-Loophole-Free Test of Bell’s Theorem with Entangled Photons.” Phys. Rev. Lett. 115 250401 (2015) https://doi.org/10.1103/PhysRevLett.115.250401.
Goorden, S. A., Horstmann, M., Mosk, A. P., Sˇkoric´, B., Pinkse, P. W. H. “Quantum-Secure Authentication of a Physical Unclonable Key.” Optica 1 421–424 (2014) https://doi.org/10.1364/OPTICA.1.000421.
Gottesman, D., Chuang, I. “Quantum Digital Signatures.” arXiv.org (2019) (accessed 6 June 2019) https://arxiv.org/abs/quant-ph/0105032.
Guan, J.-Y., et al. “Experimental Preparation and Verification of Quantum Money.” arXiv.org (2017) (accessed 5 June 2019) https://arxiv.org/abs/1709.05882.
Haylock, B., Peace, D., Lenzini, F., Weedbrook, C., Lobino, M. “Multiplexed Quantum Random Number Generation.” arXiv.org (2018) (accessed 5 June 2019) https://arxiv.org/abs/1801.06926.
Hensen, B., et al. “Loophole-Free Bell Inequality Violation Using Electron Spins Separated by 1.3 Kilometres.” Nature 526 682–686 (2015) https://doi.org/10.1038/nature15759.
Hofmann, J., et al. “Heralded Entanglement BetweenWidely Separated Atoms.” Science 337 72–75 (2012) https://doi.org/10.1126/science.1221856.
Horn, R., Abolghasem, P., Bijlani, B. J., Kang, D., Helmy, A. S., Weihs, G. “Monolithic Source of Photon Pairs.” Phys. Rev. Lett. 108 153605 (2012) https://doi.org/10.1103/PhysRevLett.108.153605.
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K. “Quantum Entanglement.” Rev. Mod. Phys. 81 865 (2009) https://doi.org/10.1103/RevModPhys.81.865.
Ikeda, K. “qBitcoin: A Peer-to-Peer Quantum Cash System.” arXiv.org (2017) (accessed 5 June 2019) https://arxiv.org/abs/1708.04955.
Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A. “Zero-Knowledge Proofs From Secure Multiparty Computation.” SIAM J. Comput. 39 1121–1152 (2009) https://doi.org/10.1137/080725398.
Jiang, W. C., Lu, X., Zhang, J., Painter, O., Lin, Q. “Silicon-Chip Source of Bright Photon Pairs.” Optics Express 23 20884–20904 (2015) https://doi.org/10.1364/OE.23.020884.
Jin, R.-B., et al. “Pulsed Sagnac Polarization-Entangled Photon Source With a PPKTP Crystal at Telecom Wavelength.” Optics Express 22 11498–11507 (2014) https://doi.org/10.1364/OE.22.011498.
Jogenfors, J. “Breaking the Unbreakable: Exploiting Loopholes in Bell’s Theorem to Hack Quantum Cryptography.” Linkoping University (2017) PhD Thesis. https://doi.org/10.3384/diss.diva-140912.
Joint Report: Interagency Working Group on Quantum Information Science of the Subcommittee on Physical Sciences. “ADVANCING QUANTUM INFORMATION SCIENCE: NATIONAL CHALLENGES AND OPPORTUNITIES” (accessed July 2018) https://www.whitehouse.gov/sites/whitehouse.gov/files/images/Quantum_Info_Sci_Report_2016_07_22%20final.pdf.
Jones, S. J., Wiseman, H. M., Doherty, A. C. “Entanglement, Einstein-Podolsky-Rosen Correlations, Bell Nonlocality, and Steering.” Phys. Rev. A 76 052116 (2007) https://doi.org/10.1103/PhysRevA.76.052116.
Kalinin, K. P., Berloff, N. G. “Blockchain Platform with Proof-of-Work Based on Analog Hamiltonian Optimisers.” arXiv.org (2018) (accessed 5 June 2019) https://arxiv.org/abs/1802.10091.
Kandala, A., et al. “Hardware-Efficient Variational Quantum Eigensolver for Small Molecules and Quantum Magnets.” Nature 549 242–246 (2017) https://doi.org/10.1038/nature23879.
Kiktenko, E. O., et al. “Demonstration of a Quantum Key Distribution Network in Urban Fibre-Optic Communication Lines.” arXiv.org (2017) (accessed 5 June 2019) https://arxiv.org/abs/1705.07154.
Kiktenko, E. O., et al. “Quantum-Secured Blockchain.” Quantum Sci. Technol. 3 035004 (2018) https://doi.org/10.1088/2058-9565/aabc6b.
King, S., Nadal, S. “PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake.” Archive.org (2012) (accessed 5 June 2019) https://archive.org/details/PPCoinPaper.
Kocsis, S., Hall, M. J. W., Bennet, A. J., Saunders, D. J., Pryde, G. J. “Experimental Measurement-Device-Independent Verification of Quantum Steering.” Nature Comms. 6 5886 (2015) https://doi.org/10.1038/ncomms6886.
Lamport, L., Shostak, R., Pease, M. “The Byzantine Generals Problem.” ACM Trans. Program. Lang. Syst. (TOPLAS) 4 382–401 (1982) https://doi.org/10.1145/357172.357176.
Lenzini, F., et al. “Active Demultiplexing of Single Photons from a Solid-State Source.” Laser and Photonics Reviews 11 1600297 (2017) https://doi.org/10.1002/lpor.201600297.
Lenzini, F., et al. “Integrated Photonic Platform for Quantum Information with Continuous Variables.” arXiv.org (2018) (accessed 5 June 2019) https://arxiv.org/abs/1804.07435.
Li, Y., Zhou, Z. Y., Ding, D. S., Shi, B. S. “CW-Pumped Telecom Band Polarization Entangled Photon Pair Generation in a Sagnac Interferometer.” Optics Express 23 28792–28800 (2015) https://doi.org/10.1364/OE.23.028792.
Liang, Y. C., Vertesi, T., Brunner, N. “Semi-Device-Independent Bounds on Entanglement.” Phys. Rev. A 83 022108 (2011) https://doi.org/10.1103/PhysRevA.83.022108.
Ling, A.,Wildfeuer, C., Scarani, V. “A Note on Quantum Safe Symmetric Key Growing.” arXiv.org (2017) (accessed 6 June 2019) https://arxiv.org/abs/1707.02766v1.
Lo, H. K., Curty, M., Qi, B. “Measurement-Device-Independent Quantum Key Distribution.” Phys. Rev. Lett. 108 130503 (2012) https://doi.org/10.1103/PhysRevLett.108.130503.
Mahadev, U. “Classical Homomorphic Encryption for Quantum Circuits.” arXiv.org (2018) (accessed 6 June 2019) https://arxiv.org/abs/1708.02130v4.
Matsukevich, D. N., Maunz, P., Moehring, D. L., Olmschenk, S., Monroe, C. “Bell Inequality Violation with Two Remote Atomic Qubits.” Phys. Rev. Lett. 100 150404 (2008) https://doi.org/10.1103/PhysRevLett.100.150404.
Mayers, D., Yao, A. “Quantum Cryptography with Imperfect Apparatus.” In IEEE Proceedings of the 39th Annual Symposium on Foundations of Computer Science ACM 503–509 (2018) https://https://dl.acm.org/citation.cfm?id=795664.796390.
Miller, A., LaViola, J. J. “Anonymous Byzantine Consensus from Moderately-Hard Puzzles: A Model for Bitcoin.” University of Central Florida Tech. Report CS-TR-14-01 (accessed 5 June 2019) https://socrates1024.s3.amazonaws.com/consensus.pdf.
Monroe, C., Meekhof, D. M., King, B. E., Itano,W. M.,Wineland, D. J. “Demonstration of a Fundamental Quantum Logic Gate.” Phys. Rev. Lett. 75 4714 (1995) https://doi.org/10.1103/PhysRevLett.75.4714.
Nakamoto, S. “Bitcoin: A Peer-to-Peer Electronic Cash System.” (2008) (accessed 5 June 2019) https://bitcoin.org/bitcoin.pdf.
Neumann, P., et al. “Multipartite Entanglement Among Single Spins in Diamond.” Science 320 1326-1329 (2008) https://doi.org/10.1126/science.1157233.
Nikolopoulos, G. M., Diamanti, E. “Continuous-Variable Quantum Authentication of Physical Unclonable Keys.” Scientific Reports 7 46047 (2017) https://doi.org/10.1038/srep46047.
No Author “Cryptocurrency Standards.” Trezor Wiki (accessed 6 June 2019) https://wiki.trezor.io/ Cryptocurrency_standards.
No Author. “Challenge Response Authentication.” Wikipedia (accessed 6 June 2019) https://en.wikipedia.org/wiki/Challenge-response_authentication.
No Author. “Framework for Improving Critical Infrastructure Cybersecurity.” National Institute of Standards and Technology (2018) (accessed 6 June 2019) https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf.
No Author. “High-Speed Quantum Cryptographic Communications with Key Distribution Speeds Exceeding 10 Mbps in a Real-World Environment.” Toshiba Corporation Press Release (2018) (accessed 5 June 2019) https://www.toshiba.co.jp/about/press/2018_09/pr1101.htm.
No Author. “Security Tenets for Life Critical Embedded Systems.” Department of Homeland Security (2015) (accessed 6 June 2019) https://www.dhs.gov/sites/default/files/publications/security-tenets-lces-paper-11-20-15-508.pdf.
Nolleke, C., Neuzner, A., Reiserer, A., Hahn, C., Rempe, G., Ritter, S. “Efficient Teleportation Between Remote Single-Atom Quantum Memories.” Phys. Rev. Lett. 110 140403 (2013) https://doi.org/10.1103/PhysRevLett.110.140403.
Ohlsson, N., Mohan, R. K., Kr¨oll, S. “Quantum Computer Hardware Based on Rare-Earth-Ion-Doped Inorganic Crystals.” Optics Communications 201 71–77 (2002) https://doi.org/10.1016/S0030-4018(01)01666-2.
Pappu, R. “Physical One-Way Functions.” Massachusetts Institute of Technology (2001) PhD Thesis. http://cba.mit.edu/docs/theses/01.03.pappuphd.powf.pdf.
Pappu, R., Recht, B., Taylor, J., Gershenfeld, N. “Physical One-Way Functions.” Science 297 2026–2030 (2002) https://doi.org/10.1126/science.1074376.
Pearle, P. M. “Hidden-Variable Example Based Upon Data Rejection.” Phys. Rev. D 2 1418–1425 (1970) https://doi.org/10.1103/PhysRevD.2.1418.
Peev, M., et al. “The SECOQC Quantum Key Distribution Network in Vienna.” New J. Phys. 11 075001 (2009) http://dx.doi.org/10.1088/1367-2630/11/7/075001.
Pirandola, S. “End-to-End Capacities of a Quantum Communication Network.” Communications Physics 2 https://doi.org/10.1038/s42005-019-0147-3.
Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A., Braunstein, S. L. “Advances in Quantum Teleportation.” Nature Photonics 9 641–652 (2015) https://doi.org/10.1038/nphoton.2015.154.
Pironio, S., Ac´ın, A., Brunner, N., Gisin, N., Massar, S., Scarani, V. “Device-Independent Quantum Key Distribution Secure Against Collective Attacks.” New Journal of Physics 11 045021 (2009) https://doi.org/10.1088/1367-2630/11/4/045021.
Pironio, S., et al. “Random Numbers Certified by Bell’s Theorem.” Nature 464 1021–1024 (2010) https://doi.org/10.1038/nature09008.
Raamsdonk, M. V. “Building Up Spacetime with Quantum Entanglement.” General Relativity and Gravitation 42 2323–2329 (2010) https://doi.org/10.1007/s10714-010-1034-0.
Rajan, D., Visser, M. “Quantum Blockchain Using Entanglement in Time.” arXiv.org (2018) (accessed 5 June 2019) https://arxiv.org/abs/1804.05979.
Rancic, M., Hedges, M. P., Ahlefeldt, R. L., Sellars, M. J. “Coherence Time of Over a Second in a Telecom-Compatible Quantum Memory Storage Material.” Nature Physics 14 50–54 (2018) https://doi.org/10.1038/nphys4254.
Reichardt, B.W., Unger, F., Vazirani, U. “A Classical Leash for a Quantum System: Command of Quantum Systems via Rigidity of CHSH Games.” In ITCS ’13 Proceedings of the 4th conference on Innovations in Theoretical Computer Science. ACM 321–322 (2013) https://doi.org/10.1145/2422436.2422473.
Rowe, M. A., et al. “Experimental Violation of a Bell’s Inequality with Efficient Detection.” Nature 409 791–794 (2001) https://doi.org/10.1038/35057215.
Salvail, L., Peev, M., Diamanti, E., All´eaume, R., L¨utkenhaus, N., L¨anger, T. “Security of Trusted Repeater Quantum Key Distribution Networks.” J. Comput. Sec. 18 61–87 (2010) https://doi.org/10.3233/JCS-2010-0373.
Sapaev, D., Bulychkov, D., Ablayev, F., Vasiliev, A., Ziatdinov, M. “qBitcoin: A Peer-to-Peer Quantum Cash System.” arXiv.org (2018) (accessed 5 June 2019) https://arxiv.org/abs/1802.06763.
Sasaki, M. “Quantum Networks: Where Should We Be Heading?” Quantum Science and Technology 2 020501 (2017) https://doi.org/10.1088/2058-9565/aa6994.
Sasaki, M., et al. “Field Test of Quantum Key Distribution in the Tokyo QKD Network.” Optics Express19 10387–10409 (2011) https://doi.org/10.1364/OE.19.010387.
Saunders, D. J. “Quantum Correlations: Experimental EPR-Steering, Bilocality and Weak Tomography in Photonic Quantum Information Science.” Griffith University (2013) PhD Thesis. https://research-repository.griffith.edu.au/handle/10072/367406.
Saunders, D. J., Jones, S. J., Wiseman, H. M., Pryde, G. J. “Experimental EPR-Steering Using Bell-Local States.” Nature Physics 6 845–849 (2010) https://doi.org/10.1038/nphys1766.
Scheidl, T., et al. “Violation of Local Realism with Freedom of Choice.” PNAS 107 19708–19713 (2010) https://doi.org/10.1073/pnas.1002780107.
Schneier, B. “Blockchain and Trust.” Schneier on Security (2019) (accessed 6 June 2019) https://www.schneier.com/blog/archives/2019/02/blockchain_and_.html.
Schneier, B. Liars and Outliers: Enabling the Trust that Society Needs to Thrive. John Wiley & Sons (2012).
Schneier, F. B. “Implementing Fault-Tolerant Services Using the State Machine Approach: A Tutorial.” ACM Comput. Surv. (CSUR) 22 299–319 (1990) https://doi.org/10.1145/98163.98167.
Shadbolt, P., Mathews, J. C. F., Laing, A., O’Brien, J. L. “Testing Foundations of Quantum Mechanics with Photons.” Nat. Phys. 10 278–286 (2014) https://doi.org/10.1038/nphys2931.
Shalm, L. K., et al. “Strong Loophole-Free Test of Local Realism.” Phys. Rev. Lett. 115 250402 (2015) https://doi.org/10.1103/PhysRevLett.115.250402.
Shin, L. “Bitcoin Blockchain Technology in Financial Services: How the Disruption Will Play Out.” Forbes https://www.forbes.com/sites/laurashin/2015/09/14/bitcoin-blockchain-technology-in-financial-services-how-the-disruption-will-play-out/.
Silverstone, J. W., et al. “On-Chip Quantum Interference Between Silicon Photon-Pair Sources.” Nature Photonics 8 104–108 (2014) https://doi.org/10.1038/nphoton.2013.339.
Skoric, B. “Quantum Readout of Physical Unclonable Functions: Remote AuthenticationWithout Trusted Readers and Authenticated Quantum Key Exchange Without Initial Shared Secrets.” Cryptology ePrint Archive (2009) (accessed 6 June 2019) https://eprint.iacr.org/2009/369.
Skoric, B. “Security Analysis of Quantum-Readout PUFs in the Case of Challenge-Estimation Attacks.” Cryptology ePrint Archive (2013) (accessed 6 June 2019) https://eprint.iacr.org/2013/479.
Smania, M., Elhassan, A. M., Tavakoli, A., Bourennane, M. “Experimental Quantum Multiparty Communication Protocols.” npj Quantum Information 2 16010 (2016) https://doi.org/10.1038/npjqi.2016.10.
Smith, D. H., et al. “Conclusive Quantum Steering with Superconducting Transition-Edge Sensors.” Nat. Comms. 3 https://doi.org/10.1038/ncomms1628.
Stucki, D., et al. “Long-Term Performance of the SwissQuantum Quantum Key Distribution Network in a Field Environment.” New J. Phys. 13 123001 (2011) https://doi.org/10.1088/1367-2630/13/12/123001.
Susskind, L. “Copenhagen vs Everett, Teleportation, and ER=EPR.” Progress of Physics 64 551–564 (2016) https://doi.org/10.1002/prop.201600036.
Susskind, L., Zhao, Y. “Teleportation Through the Wormhole.” Phys. Rev. D 98 046016 (2018) https://doi.org/10.1103/PhysRevD.98.046016.
Torres, W. A. A., et al. “Post-Quantum One-Time Linkable Ring Signature and Application to Ring Confidential Transactions in Blockchain (Lattice RingCT v1.0).” In Information Security and Privacy. ACISP 2018. Lecture Notes in Computer Science, vol. 10946 Springer 558–576 (2018) https://doi.org/10.1007/978-3-319-93638-3_32.
Tysowski, P. K., Ling, X., L¨utkenhaus, N., Mosca, M. “The Engineering of a Scalable Multi-Site Communications System Utilizing Quantum Key Distribution (QKD).” Quantum Science and Technology 3 024001 (2018) https://doi.org/10.1088/2058-9565/aa9a5d.
Ursin, R., et al. “Entanglement-Based Quantum Communication Over 144km.” Nature Phys. 3 481–486 (2007) https://doi.org/10.1038/nphys629.
Valivarthi, R., et al. “Quantum Teleportation Across a Metropolitan Fibre Network.” Nature Photonics 10 676–680 (2016) https://doi.org/10.1038/nphoton.2016.180.
van Putten, E. G. “Disorder-Enhanced Imaging with Spatially Controlled Light.” University of Twente (2011) PhD Thesis. https://doi.org/10.3990/1.9789036532471.
Vukolic, M. “The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. BFT Replication.” In J. Camenisch, D. Kesdogan (Eds.), iNetSec 2015, Open Problems in Network Security Springer 112–125 (2016) https://doi.org/10.1007/978-3-319-39028-4_9.
Wang, X.-L., et al. “18-Qubit Entanglement with Six Photons’ Three Degrees of Freedom.” Phys. Rev. Lett 120 260502 (2018) https://doi.org/10.1103/PhysRevLett.120.260502.
Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., Zeilinger, A. “Violation of Bell’s Inequality under Strict Einstein Locality Conditions.” Phys. Rev. Lett. 81 5039 (1998) https://doi.org/10.1103/PhysRevLett.81.5039.
Werbach, K. The Blockchain and the New Architecture of Trust. MIT Press (2018).
Wiseman, H. M. “From Einstein’s Theorem to Bell’s Theorem: A History of Quantum Non-Locality.” Contemporary Physics 47 79–88 (2006) https://doi.org/10.1080/00107510600581011.
Wiseman, H. M., Jones, S. J., Doherty, A. C. “Steering, Entanglement, Nonlocality, and the Einstein- Podolsky-Rosen Paradox.” Phys. Rev. Lett. 98 140402 (2007) https://doi.org/10.1103/PhysRevLett.98.140402.
Wittmann, B., et al. “Loophole-free Einstein–Podolsky–Rosen Experiment via Quantum Steering.” New J. Phys. 14 053030 (2012) https://doi.org/10.1088/1367-2630/14/5/053030.
Wollmann, S., Bennet, A. J., Walk, N., Wiseman, H. M., Pryde, G. J. “Observation of Genuine One-Way Einstein-Podolsky-Rosen Steering.” Phys. Rev. Lett. 116 160403 (2016) https://doi.org/10.1103/PhysRevLett.116.160403.
Wootters,W. K., Zurek,W. H. “A Single Quantum Cannot Be Cloned.” Nature 299 802–803 (2002) https://doi.org/10.1038/299802a0.
Xia, X. X., Sun, Q. C., Zhang, Q., Pan, J. W. “Long Distance Quantum Teleportation.” Quantum Science and Technology 3 014012 (2017) https://doi.org/10.1088/2058-9565/aa9baf.
Ydri, B. “On the Foundations of Quantum Theory.” arXiv.org (2019) (accessed 6 June 2019) https://arxiv.org/abs/1811.04245.
Zhang, F., Eyal, I., Escriva, R., Juels, A., van Renesse, R. “REM: Resource-Efficient Mining for Blockchains.” In 26th USENIX Security Symposium (USENIX Security 17) USENIX Association 1427–1444 (2017) https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/zhang.
Zhang, P., et al. “Reference-Frame-Independent Quantum-Key-Distribution Server with a Telecom Tether for an On-Chip Client.” Phys. Rev. Lett. 112 130501 (2014) https://doi.org/10.1103/PhysRevLett.112.130501.
Zheng, Z., Xie, S., Dai, H., X., C., Wang, H. “An Overview of Blockchain Technology: Architecture, Consensus, and Future Trends.” In 2017 IEEE International Congress on Big Data 557–564 (2017) https://doi.org/10.1109/BigDataCongress.2017.85.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- The Author retains copyright in the Work, where the term “Work” shall include all digital objects that may result in subsequent electronic publication or distribution.
- Upon acceptance of the Work, the author shall grant to the Publisher the right of first publication of the Work.
- The Author shall grant to the Publisher and its agents the nonexclusive perpetual right and license to publish, archive, and make accessible the Work in whole or in part in all forms of media now or hereafter known under a Creative Commons Attribution 4.0 International License or its equivalent, which, for the avoidance of doubt, allows others to copy, distribute, and transmit the Work under the following conditions:
- Attribution—other users must attribute the Work in the manner specified by the author as indicated on the journal Web site;
- The Author is able to enter into separate, additional contractual arrangements for the nonexclusive distribution of the journal's published version of the Work (e.g., post it to an institutional repository or publish it in a book), as long as there is provided in the document an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post online a prepublication manuscript (but not the Publisher’s final formatted PDF version of the Work) in institutional repositories or on their Websites prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. Any such posting made before acceptance and publication of the Work shall be updated upon publication to include a reference to the Publisher-assigned DOI (Digital Object Identifier) and a link to the online abstract for the final published Work in the Journal.
- Upon Publisher’s request, the Author agrees to furnish promptly to Publisher, at the Author’s own expense, written evidence of the permissions, licenses, and consents for use of third-party material included within the Work, except as determined by Publisher to be covered by the principles of Fair Use.
- The Author represents and warrants that:
- the Work is the Author’s original work;
- the Author has not transferred, and will not transfer, exclusive rights in the Work to any third party;
- the Work is not pending review or under consideration by another publisher;
- the Work has not previously been published;
- the Work contains no misrepresentation or infringement of the Work or property of other authors or third parties; and
- the Work contains no libel, invasion of privacy, or other unlawful matter.
- The Author agrees to indemnify and hold Publisher harmless from Author’s breach of the representations and warranties contained in Paragraph 6 above, as well as any claim or proceeding relating to Publisher’s use and publication of any content contained in the Work, including third-party content.
- The Author agrees to digitally sign the Publisher’s final formatted PDF version of the Work.
Revised 7/16/2018. Revision Description: Removed outdated link.